Commutator group normal in G [duplicate]












0












$begingroup$



This question already has an answer here:




  • How to show that the commutator subgroup is a normal subgroup

    1 answer




$G$ is a group with $e$ as it's identity element.
The commutator group $[G,G] = <[x,y]|x,y in G>$ such that $[x,y]=x^{-1}y^{-1}xy : : : forall x,y in G$



Show that $[G,G]triangleleft G$



Solution:
If $[G,G]triangleleft G$, then $g^{-1}[x,y]g$ must belong to [G,G].



$$g^{-1}[x,y]g$$
$$g^{-1}x^{-1}y^{-1}xyg$$



I am stuck here. I am not sure how to proceed since we have three elements...



Thanks for the help!










share|cite|improve this question









$endgroup$



marked as duplicate by Arturo Magidin group-theory
Users with the  group-theory badge can single-handedly close group-theory questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 8 '18 at 3:54


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.




















    0












    $begingroup$



    This question already has an answer here:




    • How to show that the commutator subgroup is a normal subgroup

      1 answer




    $G$ is a group with $e$ as it's identity element.
    The commutator group $[G,G] = <[x,y]|x,y in G>$ such that $[x,y]=x^{-1}y^{-1}xy : : : forall x,y in G$



    Show that $[G,G]triangleleft G$



    Solution:
    If $[G,G]triangleleft G$, then $g^{-1}[x,y]g$ must belong to [G,G].



    $$g^{-1}[x,y]g$$
    $$g^{-1}x^{-1}y^{-1}xyg$$



    I am stuck here. I am not sure how to proceed since we have three elements...



    Thanks for the help!










    share|cite|improve this question









    $endgroup$



    marked as duplicate by Arturo Magidin group-theory
    Users with the  group-theory badge can single-handedly close group-theory questions as duplicates and reopen them as needed.

    StackExchange.ready(function() {
    if (StackExchange.options.isMobile) return;

    $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
    var $hover = $(this).addClass('hover-bound'),
    $msg = $hover.siblings('.dupe-hammer-message');

    $hover.hover(
    function() {
    $hover.showInfoMessage('', {
    messageElement: $msg.clone().show(),
    transient: false,
    position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
    dismissable: false,
    relativeToBody: true
    });
    },
    function() {
    StackExchange.helpers.removeMessages();
    }
    );
    });
    });
    Dec 8 '18 at 3:54


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















      0












      0








      0





      $begingroup$



      This question already has an answer here:




      • How to show that the commutator subgroup is a normal subgroup

        1 answer




      $G$ is a group with $e$ as it's identity element.
      The commutator group $[G,G] = <[x,y]|x,y in G>$ such that $[x,y]=x^{-1}y^{-1}xy : : : forall x,y in G$



      Show that $[G,G]triangleleft G$



      Solution:
      If $[G,G]triangleleft G$, then $g^{-1}[x,y]g$ must belong to [G,G].



      $$g^{-1}[x,y]g$$
      $$g^{-1}x^{-1}y^{-1}xyg$$



      I am stuck here. I am not sure how to proceed since we have three elements...



      Thanks for the help!










      share|cite|improve this question









      $endgroup$





      This question already has an answer here:




      • How to show that the commutator subgroup is a normal subgroup

        1 answer




      $G$ is a group with $e$ as it's identity element.
      The commutator group $[G,G] = <[x,y]|x,y in G>$ such that $[x,y]=x^{-1}y^{-1}xy : : : forall x,y in G$



      Show that $[G,G]triangleleft G$



      Solution:
      If $[G,G]triangleleft G$, then $g^{-1}[x,y]g$ must belong to [G,G].



      $$g^{-1}[x,y]g$$
      $$g^{-1}x^{-1}y^{-1}xyg$$



      I am stuck here. I am not sure how to proceed since we have three elements...



      Thanks for the help!





      This question already has an answer here:




      • How to show that the commutator subgroup is a normal subgroup

        1 answer








      group-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 8 '18 at 3:32









      JoeyFJoeyF

      62




      62




      marked as duplicate by Arturo Magidin group-theory
      Users with the  group-theory badge can single-handedly close group-theory questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Dec 8 '18 at 3:54


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






      marked as duplicate by Arturo Magidin group-theory
      Users with the  group-theory badge can single-handedly close group-theory questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Dec 8 '18 at 3:54


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
























          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          HINT :



          $$g^{-1}x^{-1}y^{-1}xyg=g^{-1}x^{-1}gg^{-1}y^{-1}gg^{-1}xgg^{-1}yg$$



          Let $g^{-1}xg=u $ and $g^{-1}yg=v $. Then $$g^{-1}x^{-1}y^{-1}xyg=u^{-1}v^{-1}uv .$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Or, $g^{-1}ag = a[a,g]$, so $g^{-1}[x,y]g = [x,y][[x,y],g]$...
            $endgroup$
            – Arturo Magidin
            Dec 8 '18 at 3:55


















          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          HINT :



          $$g^{-1}x^{-1}y^{-1}xyg=g^{-1}x^{-1}gg^{-1}y^{-1}gg^{-1}xgg^{-1}yg$$



          Let $g^{-1}xg=u $ and $g^{-1}yg=v $. Then $$g^{-1}x^{-1}y^{-1}xyg=u^{-1}v^{-1}uv .$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Or, $g^{-1}ag = a[a,g]$, so $g^{-1}[x,y]g = [x,y][[x,y],g]$...
            $endgroup$
            – Arturo Magidin
            Dec 8 '18 at 3:55
















          1












          $begingroup$

          HINT :



          $$g^{-1}x^{-1}y^{-1}xyg=g^{-1}x^{-1}gg^{-1}y^{-1}gg^{-1}xgg^{-1}yg$$



          Let $g^{-1}xg=u $ and $g^{-1}yg=v $. Then $$g^{-1}x^{-1}y^{-1}xyg=u^{-1}v^{-1}uv .$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Or, $g^{-1}ag = a[a,g]$, so $g^{-1}[x,y]g = [x,y][[x,y],g]$...
            $endgroup$
            – Arturo Magidin
            Dec 8 '18 at 3:55














          1












          1








          1





          $begingroup$

          HINT :



          $$g^{-1}x^{-1}y^{-1}xyg=g^{-1}x^{-1}gg^{-1}y^{-1}gg^{-1}xgg^{-1}yg$$



          Let $g^{-1}xg=u $ and $g^{-1}yg=v $. Then $$g^{-1}x^{-1}y^{-1}xyg=u^{-1}v^{-1}uv .$$






          share|cite|improve this answer









          $endgroup$



          HINT :



          $$g^{-1}x^{-1}y^{-1}xyg=g^{-1}x^{-1}gg^{-1}y^{-1}gg^{-1}xgg^{-1}yg$$



          Let $g^{-1}xg=u $ and $g^{-1}yg=v $. Then $$g^{-1}x^{-1}y^{-1}xyg=u^{-1}v^{-1}uv .$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 8 '18 at 3:44









          Thomas ShelbyThomas Shelby

          2,498221




          2,498221








          • 1




            $begingroup$
            Or, $g^{-1}ag = a[a,g]$, so $g^{-1}[x,y]g = [x,y][[x,y],g]$...
            $endgroup$
            – Arturo Magidin
            Dec 8 '18 at 3:55














          • 1




            $begingroup$
            Or, $g^{-1}ag = a[a,g]$, so $g^{-1}[x,y]g = [x,y][[x,y],g]$...
            $endgroup$
            – Arturo Magidin
            Dec 8 '18 at 3:55








          1




          1




          $begingroup$
          Or, $g^{-1}ag = a[a,g]$, so $g^{-1}[x,y]g = [x,y][[x,y],g]$...
          $endgroup$
          – Arturo Magidin
          Dec 8 '18 at 3:55




          $begingroup$
          Or, $g^{-1}ag = a[a,g]$, so $g^{-1}[x,y]g = [x,y][[x,y],g]$...
          $endgroup$
          – Arturo Magidin
          Dec 8 '18 at 3:55



          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen