A mistake I can't find about the Bochner formula
$begingroup$
Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
and
$$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.
Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
=&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
end{split}
end{equation*}
However,
begin{equation*}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
end{split}
end{equation*}
Hence, we obtain
begin{equation}
begin{split}
Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
end{split}
end{equation}
We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
begin{equation}
begin{split}
sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
=&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
&+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
&+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
end{split}
end{equation}
Secondly,
begin{equation}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
=& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
=&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation}
From the above three equalities we obtain
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r
=frac{1}{2}partial_r(Delta_Tr)
+frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation*}
Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
begin{equation*}
begin{split}
partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
But it is well known that the Bochner formula for the distance function
begin{equation*}
begin{split}
|mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
This obtain a contradiction.
What is wrong with the above derivation? Thanks in advence.
differential-geometry riemannian-geometry
$endgroup$
add a comment |
$begingroup$
Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
and
$$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.
Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
=&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
end{split}
end{equation*}
However,
begin{equation*}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
end{split}
end{equation*}
Hence, we obtain
begin{equation}
begin{split}
Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
end{split}
end{equation}
We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
begin{equation}
begin{split}
sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
=&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
&+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
&+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
end{split}
end{equation}
Secondly,
begin{equation}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
=& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
=&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation}
From the above three equalities we obtain
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r
=frac{1}{2}partial_r(Delta_Tr)
+frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation*}
Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
begin{equation*}
begin{split}
partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
But it is well known that the Bochner formula for the distance function
begin{equation*}
begin{split}
|mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
This obtain a contradiction.
What is wrong with the above derivation? Thanks in advence.
differential-geometry riemannian-geometry
$endgroup$
add a comment |
$begingroup$
Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
and
$$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.
Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
=&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
end{split}
end{equation*}
However,
begin{equation*}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
end{split}
end{equation*}
Hence, we obtain
begin{equation}
begin{split}
Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
end{split}
end{equation}
We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
begin{equation}
begin{split}
sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
=&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
&+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
&+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
end{split}
end{equation}
Secondly,
begin{equation}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
=& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
=&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation}
From the above three equalities we obtain
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r
=frac{1}{2}partial_r(Delta_Tr)
+frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation*}
Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
begin{equation*}
begin{split}
partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
But it is well known that the Bochner formula for the distance function
begin{equation*}
begin{split}
|mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
This obtain a contradiction.
What is wrong with the above derivation? Thanks in advence.
differential-geometry riemannian-geometry
$endgroup$
Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
and
$$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.
Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
=&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
end{split}
end{equation*}
However,
begin{equation*}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
end{split}
end{equation*}
Hence, we obtain
begin{equation}
begin{split}
Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
end{split}
end{equation}
We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
begin{equation}
begin{split}
sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
=&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
&+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
&+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
end{split}
end{equation}
Secondly,
begin{equation}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
=& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
=&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation}
From the above three equalities we obtain
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r
=frac{1}{2}partial_r(Delta_Tr)
+frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation*}
Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
begin{equation*}
begin{split}
partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
But it is well known that the Bochner formula for the distance function
begin{equation*}
begin{split}
|mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}
This obtain a contradiction.
What is wrong with the above derivation? Thanks in advence.
differential-geometry riemannian-geometry
differential-geometry riemannian-geometry
edited Dec 18 '18 at 7:10
G. Zhao
asked Dec 18 '18 at 6:34
G. ZhaoG. Zhao
234
234
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044849%2fa-mistake-i-cant-find-about-the-bochner-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044849%2fa-mistake-i-cant-find-about-the-bochner-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown