Using concexity property of norm function












0












$begingroup$


Let $(X,|.|)$ be a Banach space. Let $xneq 0$ and $yneq 0$ be in $X$ such that there exists a non zero $lambda_0inmathbb{R}$, $lambda_0$ to be<0, such that $|x+lambda_0y|<|x|$. Can anyone tell me how by convexity of the norm function $|x+lambda y|<|x|$
for $lambda in [lambda_0, 0).$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    @D.B. I don't see your point. I think you misread the question
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:03






  • 1




    $begingroup$
    @user535666 If $f(t) := ||x+ty||$, then $f$ is convex and so $f(lambda) le alpha f(lambda_0)+(1-alpha)f(0) < ||x||$ where $alpha in (0,1]$ is s.t. $lambda = alpha lambda_0+(1-alpha)_0$.
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:05


















0












$begingroup$


Let $(X,|.|)$ be a Banach space. Let $xneq 0$ and $yneq 0$ be in $X$ such that there exists a non zero $lambda_0inmathbb{R}$, $lambda_0$ to be<0, such that $|x+lambda_0y|<|x|$. Can anyone tell me how by convexity of the norm function $|x+lambda y|<|x|$
for $lambda in [lambda_0, 0).$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    @D.B. I don't see your point. I think you misread the question
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:03






  • 1




    $begingroup$
    @user535666 If $f(t) := ||x+ty||$, then $f$ is convex and so $f(lambda) le alpha f(lambda_0)+(1-alpha)f(0) < ||x||$ where $alpha in (0,1]$ is s.t. $lambda = alpha lambda_0+(1-alpha)_0$.
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:05
















0












0








0





$begingroup$


Let $(X,|.|)$ be a Banach space. Let $xneq 0$ and $yneq 0$ be in $X$ such that there exists a non zero $lambda_0inmathbb{R}$, $lambda_0$ to be<0, such that $|x+lambda_0y|<|x|$. Can anyone tell me how by convexity of the norm function $|x+lambda y|<|x|$
for $lambda in [lambda_0, 0).$?










share|cite|improve this question









$endgroup$




Let $(X,|.|)$ be a Banach space. Let $xneq 0$ and $yneq 0$ be in $X$ such that there exists a non zero $lambda_0inmathbb{R}$, $lambda_0$ to be<0, such that $|x+lambda_0y|<|x|$. Can anyone tell me how by convexity of the norm function $|x+lambda y|<|x|$
for $lambda in [lambda_0, 0).$?







functional-analysis convex-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 18 '18 at 6:39









user534666user534666

224




224












  • $begingroup$
    @D.B. I don't see your point. I think you misread the question
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:03






  • 1




    $begingroup$
    @user535666 If $f(t) := ||x+ty||$, then $f$ is convex and so $f(lambda) le alpha f(lambda_0)+(1-alpha)f(0) < ||x||$ where $alpha in (0,1]$ is s.t. $lambda = alpha lambda_0+(1-alpha)_0$.
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:05




















  • $begingroup$
    @D.B. I don't see your point. I think you misread the question
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:03






  • 1




    $begingroup$
    @user535666 If $f(t) := ||x+ty||$, then $f$ is convex and so $f(lambda) le alpha f(lambda_0)+(1-alpha)f(0) < ||x||$ where $alpha in (0,1]$ is s.t. $lambda = alpha lambda_0+(1-alpha)_0$.
    $endgroup$
    – mathworker21
    Dec 18 '18 at 7:05


















$begingroup$
@D.B. I don't see your point. I think you misread the question
$endgroup$
– mathworker21
Dec 18 '18 at 7:03




$begingroup$
@D.B. I don't see your point. I think you misread the question
$endgroup$
– mathworker21
Dec 18 '18 at 7:03




1




1




$begingroup$
@user535666 If $f(t) := ||x+ty||$, then $f$ is convex and so $f(lambda) le alpha f(lambda_0)+(1-alpha)f(0) < ||x||$ where $alpha in (0,1]$ is s.t. $lambda = alpha lambda_0+(1-alpha)_0$.
$endgroup$
– mathworker21
Dec 18 '18 at 7:05






$begingroup$
@user535666 If $f(t) := ||x+ty||$, then $f$ is convex and so $f(lambda) le alpha f(lambda_0)+(1-alpha)f(0) < ||x||$ where $alpha in (0,1]$ is s.t. $lambda = alpha lambda_0+(1-alpha)_0$.
$endgroup$
– mathworker21
Dec 18 '18 at 7:05












1 Answer
1






active

oldest

votes


















0












$begingroup$

Set $y_0=lambda_0y$, then $|x+y_0|<|x|$. By triangle inequality (or the convexity property as you mention) we have, for $gammain(0,1]$,
$$
|x+gamma y_0|=|gamma(x+y_0)+(1-gamma) x|leqgamma|x+y_0|+(1-gamma)|x|<|x|,
$$

that is to say, for $lambdainlambda_0(0,1]$, we have
$$
|x+lambda y|<|x|.
$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044854%2fusing-concexity-property-of-norm-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Set $y_0=lambda_0y$, then $|x+y_0|<|x|$. By triangle inequality (or the convexity property as you mention) we have, for $gammain(0,1]$,
    $$
    |x+gamma y_0|=|gamma(x+y_0)+(1-gamma) x|leqgamma|x+y_0|+(1-gamma)|x|<|x|,
    $$

    that is to say, for $lambdainlambda_0(0,1]$, we have
    $$
    |x+lambda y|<|x|.
    $$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Set $y_0=lambda_0y$, then $|x+y_0|<|x|$. By triangle inequality (or the convexity property as you mention) we have, for $gammain(0,1]$,
      $$
      |x+gamma y_0|=|gamma(x+y_0)+(1-gamma) x|leqgamma|x+y_0|+(1-gamma)|x|<|x|,
      $$

      that is to say, for $lambdainlambda_0(0,1]$, we have
      $$
      |x+lambda y|<|x|.
      $$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Set $y_0=lambda_0y$, then $|x+y_0|<|x|$. By triangle inequality (or the convexity property as you mention) we have, for $gammain(0,1]$,
        $$
        |x+gamma y_0|=|gamma(x+y_0)+(1-gamma) x|leqgamma|x+y_0|+(1-gamma)|x|<|x|,
        $$

        that is to say, for $lambdainlambda_0(0,1]$, we have
        $$
        |x+lambda y|<|x|.
        $$






        share|cite|improve this answer









        $endgroup$



        Set $y_0=lambda_0y$, then $|x+y_0|<|x|$. By triangle inequality (or the convexity property as you mention) we have, for $gammain(0,1]$,
        $$
        |x+gamma y_0|=|gamma(x+y_0)+(1-gamma) x|leqgamma|x+y_0|+(1-gamma)|x|<|x|,
        $$

        that is to say, for $lambdainlambda_0(0,1]$, we have
        $$
        |x+lambda y|<|x|.
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 18 '18 at 7:41









        JRenJRen

        1845




        1845






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044854%2fusing-concexity-property-of-norm-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen