Find $limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$












3















Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$




This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$



and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$



and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get



$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$



I assume this is incorrect. Help/Corrections would be greatly appreciated.










share|cite|improve this question
























  • $cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
    – xbh
    Dec 3 '18 at 9:54
















3















Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$




This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$



and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$



and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get



$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$



I assume this is incorrect. Help/Corrections would be greatly appreciated.










share|cite|improve this question
























  • $cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
    – xbh
    Dec 3 '18 at 9:54














3












3








3


1






Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$




This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$



and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$



and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get



$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$



I assume this is incorrect. Help/Corrections would be greatly appreciated.










share|cite|improve this question
















Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$




This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.



$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$



and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$



and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get



$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$



I assume this is incorrect. Help/Corrections would be greatly appreciated.







real-analysis sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 3 '18 at 11:02









Did

246k23221455




246k23221455










asked Dec 3 '18 at 9:41









SABOY

532311




532311












  • $cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
    – xbh
    Dec 3 '18 at 9:54


















  • $cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
    – xbh
    Dec 3 '18 at 9:54
















$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
– xbh
Dec 3 '18 at 9:54




$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
– xbh
Dec 3 '18 at 9:54










1 Answer
1






active

oldest

votes


















2














In your manipulations there is a mistake: note that for $kge 2$



$$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$



A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.



Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently



$$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$



Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023840%2ffind-lim-limits-n-to-infty-sum-limits-k-1-infty-frac1k2-sqrtk%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2














    In your manipulations there is a mistake: note that for $kge 2$



    $$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$



    A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.



    Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently



    $$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$



    Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.






    share|cite|improve this answer




























      2














      In your manipulations there is a mistake: note that for $kge 2$



      $$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$



      A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.



      Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently



      $$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$



      Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.






      share|cite|improve this answer


























        2












        2








        2






        In your manipulations there is a mistake: note that for $kge 2$



        $$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$



        A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.



        Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently



        $$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$



        Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.






        share|cite|improve this answer














        In your manipulations there is a mistake: note that for $kge 2$



        $$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$



        A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.



        Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently



        $$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$



        Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 3 '18 at 11:13

























        answered Dec 3 '18 at 10:38









        Masacroso

        13k41746




        13k41746






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023840%2ffind-lim-limits-n-to-infty-sum-limits-k-1-infty-frac1k2-sqrtk%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen