Covariant Exterior Derivative action on the $mathrm{End}(E)$-valued p-forms












1












$begingroup$


Suppose I define an operator $d_A$ by its action on sections $sin Gamma(E)=Omega_M^0(E)$ of some vector bundle $Pi:Erightarrow M$ in a trivializing neighbourhood $Usubset M$ as
$$ d_As|_U=(ds+Awedge s)|_U$$
for some connection $A=(A^i_j)$ with $A^i_jin Omega^1(U)$. By writing $omegainOmega^r_M(E)$ as $omega=e_iwedge omega^i$ where $omega^iin Omega^r(M)$ and $e_iin Gamma(E)$ are local basis sections, and imposing,
$$d_A(etawedge omega^i)=d_Aetawedge omega^i+(-1)^{mathrm{deg}(eta)}etawedge domega^iqquad forall etain Omega^r_M(E)quad (1)$$
I've shown,
$$d_Aomega=d_A(e_iwedge omega^i)=d_Ae_iwedge omega^i+(-1)^0e_iwedge domega^i\
=de_iwedgeomega^i+Awedge e_iwedge omega^i+e_iwedge domega^i\
=d(omega)-e_iwedge domega^i+Awedgeomega+e_iwedge domega^i\
=domega+Awedge omega
$$

Now suppose I have $sigmain Gamma(mathrm{End}(E))=Omega^0_M(mathrm{End}(E))$, I have been told that one can extend $d_A$ as a map,
$$d_A:Omega^r_M(mathrm{End}(E))rightarrow Omega_M^{r+1}(mathrm{End}(E)) $$
by first imposing,
$$d_A(sigma)s=d_A(sigma s)-sigma d_Asquad (2)$$
to show,
$$d_A(muwedge alpha)=d_Amuwedge alpha+(-1)^{mathrm{deg}(mu)}(muwedge d_Aalpha)qquadforall muin Omega_M^p(mathrm{End}(E)),alphainOmega_M^q(E)$$
then it follows that,
$$d_A(muwedge beta)=d_Amuwedge beta+(-1)^{mathrm{deg}(mu)}(muwedge d_Abeta)qquadforall muin Omega_M^p(mathrm{End}(E)),betainOmega_M^q(mathrm{End}(E))$$
It also apparently follows that if $muin Omega_M^2(mathrm{End}(E))$ then,
$$d_Amu=dmu+Awedge mu-muwedge A$$
Here is my confused attempt, maybe consider them more as ideas:



From (2), if I ASSUME that I can do the following,



$d_A(sigmawedge s)=d(sigmawedge s)+Awedgesigmawedge s
=(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s
$



Combining with (2) we have,



$(d_Asigma)wedge s=(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s-sigmawedge ds-sigmawedge Awedge s\
=dsigmawedge s+Awedgesigmawedge s-sigmawedge Awedge s\
=(dsigma+Awedgesigma-sigmawedge A)wedge s\
implies d_Asigma=dsigma+Awedgesigma-sigmawedge A
$



Then, if we write $omegain Omega_M^p(mathrm{End}(E))$ as $omega=f_iwedge omega^i$ where $f^iin Gamma(mathrm{End}(E))=Omega_M^0(mathrm{End}(E))$, and if I also ASSUME that (1) holds with for $etain Omega_M^r(mathrm{End}(E))
$
then,



$d_Aomega=d_A(f_iwedge omega^i)=d_Af_iwedge omega^i+(-1)^0f_iwedge domega^i\
=df_iwedge omega^i+Awedge f^iwedgeomega^i-f^iwedge Awedge omega^i+f_iwedge domega^i \
=d(omega)-f^iwedge domega^i+Awedgeomega-(-1)^{(r)}f^iwedgeomega^iwedge A+f_iwedge domega^i\
=domega+Awedgeomega-(-1)^romegawedge A
$



which gives the $Omega^2_M(mathrm{End}(E))$ as a corollary.



I've had some other thoughts, none of them well enough formulated to write down, any help with the above would be very much appreciated. There is a reference:
https://www.dpmms.cam.ac.uk/~agk22/vb.pdf page 35.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Suppose I define an operator $d_A$ by its action on sections $sin Gamma(E)=Omega_M^0(E)$ of some vector bundle $Pi:Erightarrow M$ in a trivializing neighbourhood $Usubset M$ as
    $$ d_As|_U=(ds+Awedge s)|_U$$
    for some connection $A=(A^i_j)$ with $A^i_jin Omega^1(U)$. By writing $omegainOmega^r_M(E)$ as $omega=e_iwedge omega^i$ where $omega^iin Omega^r(M)$ and $e_iin Gamma(E)$ are local basis sections, and imposing,
    $$d_A(etawedge omega^i)=d_Aetawedge omega^i+(-1)^{mathrm{deg}(eta)}etawedge domega^iqquad forall etain Omega^r_M(E)quad (1)$$
    I've shown,
    $$d_Aomega=d_A(e_iwedge omega^i)=d_Ae_iwedge omega^i+(-1)^0e_iwedge domega^i\
    =de_iwedgeomega^i+Awedge e_iwedge omega^i+e_iwedge domega^i\
    =d(omega)-e_iwedge domega^i+Awedgeomega+e_iwedge domega^i\
    =domega+Awedge omega
    $$

    Now suppose I have $sigmain Gamma(mathrm{End}(E))=Omega^0_M(mathrm{End}(E))$, I have been told that one can extend $d_A$ as a map,
    $$d_A:Omega^r_M(mathrm{End}(E))rightarrow Omega_M^{r+1}(mathrm{End}(E)) $$
    by first imposing,
    $$d_A(sigma)s=d_A(sigma s)-sigma d_Asquad (2)$$
    to show,
    $$d_A(muwedge alpha)=d_Amuwedge alpha+(-1)^{mathrm{deg}(mu)}(muwedge d_Aalpha)qquadforall muin Omega_M^p(mathrm{End}(E)),alphainOmega_M^q(E)$$
    then it follows that,
    $$d_A(muwedge beta)=d_Amuwedge beta+(-1)^{mathrm{deg}(mu)}(muwedge d_Abeta)qquadforall muin Omega_M^p(mathrm{End}(E)),betainOmega_M^q(mathrm{End}(E))$$
    It also apparently follows that if $muin Omega_M^2(mathrm{End}(E))$ then,
    $$d_Amu=dmu+Awedge mu-muwedge A$$
    Here is my confused attempt, maybe consider them more as ideas:



    From (2), if I ASSUME that I can do the following,



    $d_A(sigmawedge s)=d(sigmawedge s)+Awedgesigmawedge s
    =(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s
    $



    Combining with (2) we have,



    $(d_Asigma)wedge s=(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s-sigmawedge ds-sigmawedge Awedge s\
    =dsigmawedge s+Awedgesigmawedge s-sigmawedge Awedge s\
    =(dsigma+Awedgesigma-sigmawedge A)wedge s\
    implies d_Asigma=dsigma+Awedgesigma-sigmawedge A
    $



    Then, if we write $omegain Omega_M^p(mathrm{End}(E))$ as $omega=f_iwedge omega^i$ where $f^iin Gamma(mathrm{End}(E))=Omega_M^0(mathrm{End}(E))$, and if I also ASSUME that (1) holds with for $etain Omega_M^r(mathrm{End}(E))
    $
    then,



    $d_Aomega=d_A(f_iwedge omega^i)=d_Af_iwedge omega^i+(-1)^0f_iwedge domega^i\
    =df_iwedge omega^i+Awedge f^iwedgeomega^i-f^iwedge Awedge omega^i+f_iwedge domega^i \
    =d(omega)-f^iwedge domega^i+Awedgeomega-(-1)^{(r)}f^iwedgeomega^iwedge A+f_iwedge domega^i\
    =domega+Awedgeomega-(-1)^romegawedge A
    $



    which gives the $Omega^2_M(mathrm{End}(E))$ as a corollary.



    I've had some other thoughts, none of them well enough formulated to write down, any help with the above would be very much appreciated. There is a reference:
    https://www.dpmms.cam.ac.uk/~agk22/vb.pdf page 35.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Suppose I define an operator $d_A$ by its action on sections $sin Gamma(E)=Omega_M^0(E)$ of some vector bundle $Pi:Erightarrow M$ in a trivializing neighbourhood $Usubset M$ as
      $$ d_As|_U=(ds+Awedge s)|_U$$
      for some connection $A=(A^i_j)$ with $A^i_jin Omega^1(U)$. By writing $omegainOmega^r_M(E)$ as $omega=e_iwedge omega^i$ where $omega^iin Omega^r(M)$ and $e_iin Gamma(E)$ are local basis sections, and imposing,
      $$d_A(etawedge omega^i)=d_Aetawedge omega^i+(-1)^{mathrm{deg}(eta)}etawedge domega^iqquad forall etain Omega^r_M(E)quad (1)$$
      I've shown,
      $$d_Aomega=d_A(e_iwedge omega^i)=d_Ae_iwedge omega^i+(-1)^0e_iwedge domega^i\
      =de_iwedgeomega^i+Awedge e_iwedge omega^i+e_iwedge domega^i\
      =d(omega)-e_iwedge domega^i+Awedgeomega+e_iwedge domega^i\
      =domega+Awedge omega
      $$

      Now suppose I have $sigmain Gamma(mathrm{End}(E))=Omega^0_M(mathrm{End}(E))$, I have been told that one can extend $d_A$ as a map,
      $$d_A:Omega^r_M(mathrm{End}(E))rightarrow Omega_M^{r+1}(mathrm{End}(E)) $$
      by first imposing,
      $$d_A(sigma)s=d_A(sigma s)-sigma d_Asquad (2)$$
      to show,
      $$d_A(muwedge alpha)=d_Amuwedge alpha+(-1)^{mathrm{deg}(mu)}(muwedge d_Aalpha)qquadforall muin Omega_M^p(mathrm{End}(E)),alphainOmega_M^q(E)$$
      then it follows that,
      $$d_A(muwedge beta)=d_Amuwedge beta+(-1)^{mathrm{deg}(mu)}(muwedge d_Abeta)qquadforall muin Omega_M^p(mathrm{End}(E)),betainOmega_M^q(mathrm{End}(E))$$
      It also apparently follows that if $muin Omega_M^2(mathrm{End}(E))$ then,
      $$d_Amu=dmu+Awedge mu-muwedge A$$
      Here is my confused attempt, maybe consider them more as ideas:



      From (2), if I ASSUME that I can do the following,



      $d_A(sigmawedge s)=d(sigmawedge s)+Awedgesigmawedge s
      =(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s
      $



      Combining with (2) we have,



      $(d_Asigma)wedge s=(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s-sigmawedge ds-sigmawedge Awedge s\
      =dsigmawedge s+Awedgesigmawedge s-sigmawedge Awedge s\
      =(dsigma+Awedgesigma-sigmawedge A)wedge s\
      implies d_Asigma=dsigma+Awedgesigma-sigmawedge A
      $



      Then, if we write $omegain Omega_M^p(mathrm{End}(E))$ as $omega=f_iwedge omega^i$ where $f^iin Gamma(mathrm{End}(E))=Omega_M^0(mathrm{End}(E))$, and if I also ASSUME that (1) holds with for $etain Omega_M^r(mathrm{End}(E))
      $
      then,



      $d_Aomega=d_A(f_iwedge omega^i)=d_Af_iwedge omega^i+(-1)^0f_iwedge domega^i\
      =df_iwedge omega^i+Awedge f^iwedgeomega^i-f^iwedge Awedge omega^i+f_iwedge domega^i \
      =d(omega)-f^iwedge domega^i+Awedgeomega-(-1)^{(r)}f^iwedgeomega^iwedge A+f_iwedge domega^i\
      =domega+Awedgeomega-(-1)^romegawedge A
      $



      which gives the $Omega^2_M(mathrm{End}(E))$ as a corollary.



      I've had some other thoughts, none of them well enough formulated to write down, any help with the above would be very much appreciated. There is a reference:
      https://www.dpmms.cam.ac.uk/~agk22/vb.pdf page 35.










      share|cite|improve this question











      $endgroup$




      Suppose I define an operator $d_A$ by its action on sections $sin Gamma(E)=Omega_M^0(E)$ of some vector bundle $Pi:Erightarrow M$ in a trivializing neighbourhood $Usubset M$ as
      $$ d_As|_U=(ds+Awedge s)|_U$$
      for some connection $A=(A^i_j)$ with $A^i_jin Omega^1(U)$. By writing $omegainOmega^r_M(E)$ as $omega=e_iwedge omega^i$ where $omega^iin Omega^r(M)$ and $e_iin Gamma(E)$ are local basis sections, and imposing,
      $$d_A(etawedge omega^i)=d_Aetawedge omega^i+(-1)^{mathrm{deg}(eta)}etawedge domega^iqquad forall etain Omega^r_M(E)quad (1)$$
      I've shown,
      $$d_Aomega=d_A(e_iwedge omega^i)=d_Ae_iwedge omega^i+(-1)^0e_iwedge domega^i\
      =de_iwedgeomega^i+Awedge e_iwedge omega^i+e_iwedge domega^i\
      =d(omega)-e_iwedge domega^i+Awedgeomega+e_iwedge domega^i\
      =domega+Awedge omega
      $$

      Now suppose I have $sigmain Gamma(mathrm{End}(E))=Omega^0_M(mathrm{End}(E))$, I have been told that one can extend $d_A$ as a map,
      $$d_A:Omega^r_M(mathrm{End}(E))rightarrow Omega_M^{r+1}(mathrm{End}(E)) $$
      by first imposing,
      $$d_A(sigma)s=d_A(sigma s)-sigma d_Asquad (2)$$
      to show,
      $$d_A(muwedge alpha)=d_Amuwedge alpha+(-1)^{mathrm{deg}(mu)}(muwedge d_Aalpha)qquadforall muin Omega_M^p(mathrm{End}(E)),alphainOmega_M^q(E)$$
      then it follows that,
      $$d_A(muwedge beta)=d_Amuwedge beta+(-1)^{mathrm{deg}(mu)}(muwedge d_Abeta)qquadforall muin Omega_M^p(mathrm{End}(E)),betainOmega_M^q(mathrm{End}(E))$$
      It also apparently follows that if $muin Omega_M^2(mathrm{End}(E))$ then,
      $$d_Amu=dmu+Awedge mu-muwedge A$$
      Here is my confused attempt, maybe consider them more as ideas:



      From (2), if I ASSUME that I can do the following,



      $d_A(sigmawedge s)=d(sigmawedge s)+Awedgesigmawedge s
      =(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s
      $



      Combining with (2) we have,



      $(d_Asigma)wedge s=(dsigma)wedge s+sigmawedge ds+Awedgesigmawedge s-sigmawedge ds-sigmawedge Awedge s\
      =dsigmawedge s+Awedgesigmawedge s-sigmawedge Awedge s\
      =(dsigma+Awedgesigma-sigmawedge A)wedge s\
      implies d_Asigma=dsigma+Awedgesigma-sigmawedge A
      $



      Then, if we write $omegain Omega_M^p(mathrm{End}(E))$ as $omega=f_iwedge omega^i$ where $f^iin Gamma(mathrm{End}(E))=Omega_M^0(mathrm{End}(E))$, and if I also ASSUME that (1) holds with for $etain Omega_M^r(mathrm{End}(E))
      $
      then,



      $d_Aomega=d_A(f_iwedge omega^i)=d_Af_iwedge omega^i+(-1)^0f_iwedge domega^i\
      =df_iwedge omega^i+Awedge f^iwedgeomega^i-f^iwedge Awedge omega^i+f_iwedge domega^i \
      =d(omega)-f^iwedge domega^i+Awedgeomega-(-1)^{(r)}f^iwedgeomega^iwedge A+f_iwedge domega^i\
      =domega+Awedgeomega-(-1)^romegawedge A
      $



      which gives the $Omega^2_M(mathrm{End}(E))$ as a corollary.



      I've had some other thoughts, none of them well enough formulated to write down, any help with the above would be very much appreciated. There is a reference:
      https://www.dpmms.cam.ac.uk/~agk22/vb.pdf page 35.







      differential-geometry differential-forms vector-bundles exterior-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 17 at 11:29







      Sam Collie

















      asked Dec 23 '18 at 18:24









      Sam CollieSam Collie

      507




      507






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050589%2fcovariant-exterior-derivative-action-on-the-mathrmende-valued-p-forms%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050589%2fcovariant-exterior-derivative-action-on-the-mathrmende-valued-p-forms%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen