Proving $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+…+σ(k_m)-(p-1)} {p-1}+ frac...












0












$begingroup$


Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.



Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.



Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.



Let $0leq l_1,...l_μleq p-1$.



Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.



Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.



Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.



Assume further that $α+β=n$.




I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$




I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.



Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.



    Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.



    Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.



    Let $0leq l_1,...l_μleq p-1$.



    Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.



    Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.



    Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.



    Assume further that $α+β=n$.




    I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$




    I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.



    Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.



      Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.



      Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.



      Let $0leq l_1,...l_μleq p-1$.



      Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.



      Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.



      Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.



      Assume further that $α+β=n$.




      I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$




      I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.



      Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.










      share|cite|improve this question









      $endgroup$




      Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.



      Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.



      Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.



      Let $0leq l_1,...l_μleq p-1$.



      Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.



      Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.



      Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.



      Assume further that $α+β=n$.




      I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$




      I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.



      Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.







      number-theory inequality polynomials prime-numbers vectors






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 20 '18 at 18:07









      Pascal's WagerPascal's Wager

      364315




      364315






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047815%2fproving-frac-1-max-h-1-h-2-n-fracjh-1-p-1-leq-%25ce%25b1-frac-%25cf%2583k-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047815%2fproving-frac-1-max-h-1-h-2-n-fracjh-1-p-1-leq-%25ce%25b1-frac-%25cf%2583k-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen