Proving $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+…+σ(k_m)-(p-1)} {p-1}+ frac...
$begingroup$
Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.
Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.
Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.
Let $0leq l_1,...l_μleq p-1$.
Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.
Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.
Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.
Assume further that $α+β=n$.
I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$
I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.
Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.
number-theory inequality polynomials prime-numbers vectors
$endgroup$
add a comment |
$begingroup$
Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.
Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.
Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.
Let $0leq l_1,...l_μleq p-1$.
Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.
Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.
Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.
Assume further that $α+β=n$.
I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$
I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.
Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.
number-theory inequality polynomials prime-numbers vectors
$endgroup$
add a comment |
$begingroup$
Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.
Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.
Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.
Let $0leq l_1,...l_μleq p-1$.
Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.
Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.
Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.
Assume further that $α+β=n$.
I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$
I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.
Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.
number-theory inequality polynomials prime-numbers vectors
$endgroup$
Let $F_1,F_2in mathbb{Z}[x_1,...,x_n]$ where $d_i=deg(F_i)$ and $d_1+d_2<n$.
Write $F_1(x)=a_1x^{e_1}+...+a_mx^{e_m}$ and $F_2(x)=b_1x^{ε_1}+...+b_μx^{ε_μ}$, where each $e_i,ε_i$ are vectors in $mathbb{Z}^n$. Write $e_1=begin{bmatrix} e_{11} \ ... \ e_{1n} end{bmatrix}$ and so on.
Let $p$ be prime. Let $0leq jleq p-1$ and let $k_1,...,k_min mathbb{Z}_{geq 0}$ such that $k_1+...+k_m=jp^n$.
Let $0leq l_1,...l_μleq p-1$.
Let $h_1=max{σ(e_{i1})+...+σ(e_{in}):1leq i leq m}$ and $h_2=max{σ(ε_{i1})+...+σ(ε_{in}):1leq i leq μ}$, where $σ$ returns the sum of digits in the base-p expansion.
Let $α=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}=0}$.
Let $β=card{i:σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_{1i}+...+l_με_{μi}$ isn't zero but is divisible by $p-1}$.
Assume further that $α+β=n$.
I want to show that $frac 1 {max{h_1,h_2}}(n-frac{jh_1} {p-1})leq α+frac {σ(k_1)+...+σ(k_m)-(p-1)} {p-1}+ frac {l_1+...+l_μ} {p-1}$
I see that the sum of coordinates in the vector $σ(k_1)e_{11}+...+σ(k_m)e_{mi}+l_1ε_1+...+l_με_μ$ is bounded below by $β(p-1)$ since each coordinate is divisible by $p-1$, and bounded above by $[σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$.
Hence we have the inequality $β(p-1)leq [σ(k_1)+...+σ(k_m)]d_1+[l_1+...l_μ]d_2$, which I'm hoping to be able to use to prove the highlighted inequality.
number-theory inequality polynomials prime-numbers vectors
number-theory inequality polynomials prime-numbers vectors
asked Dec 20 '18 at 18:07
Pascal's WagerPascal's Wager
364315
364315
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047815%2fproving-frac-1-max-h-1-h-2-n-fracjh-1-p-1-leq-%25ce%25b1-frac-%25cf%2583k-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047815%2fproving-frac-1-max-h-1-h-2-n-fracjh-1-p-1-leq-%25ce%25b1-frac-%25cf%2583k-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown