Test the convergence of series $sum frac{a^n}{a^n+x^n}$ when $xneq0$












3












$begingroup$


Let $ t_n=frac{a^n}{a^n+x^n}$ and using root test
$$ displaystyle lim_{n to infty} {t_n}^{frac{1}{n}}= lim_{n to infty} left(frac{a^n}{a^n+x^n}right)^{frac{1}{n}}= lim_{n to infty} frac{1}{big(1+(frac{x}{a})^nbig)^{frac{1}{n}}}$$
Now I am stuck, I don't know how to evaluate this limit










share|cite|improve this question









$endgroup$








  • 6




    $begingroup$
    What’s a definition of $e^x$?
    $endgroup$
    – R.Jackson
    Dec 20 '18 at 17:38










  • $begingroup$
    @R.Jackson Thanks for replying. But I don't get it. The exponent $frac{1}{n}$ in the denominator doesn't tends to infinity so how can we use the definition of $e^x$.
    $endgroup$
    – jiren
    Dec 20 '18 at 17:58


















3












$begingroup$


Let $ t_n=frac{a^n}{a^n+x^n}$ and using root test
$$ displaystyle lim_{n to infty} {t_n}^{frac{1}{n}}= lim_{n to infty} left(frac{a^n}{a^n+x^n}right)^{frac{1}{n}}= lim_{n to infty} frac{1}{big(1+(frac{x}{a})^nbig)^{frac{1}{n}}}$$
Now I am stuck, I don't know how to evaluate this limit










share|cite|improve this question









$endgroup$








  • 6




    $begingroup$
    What’s a definition of $e^x$?
    $endgroup$
    – R.Jackson
    Dec 20 '18 at 17:38










  • $begingroup$
    @R.Jackson Thanks for replying. But I don't get it. The exponent $frac{1}{n}$ in the denominator doesn't tends to infinity so how can we use the definition of $e^x$.
    $endgroup$
    – jiren
    Dec 20 '18 at 17:58
















3












3








3





$begingroup$


Let $ t_n=frac{a^n}{a^n+x^n}$ and using root test
$$ displaystyle lim_{n to infty} {t_n}^{frac{1}{n}}= lim_{n to infty} left(frac{a^n}{a^n+x^n}right)^{frac{1}{n}}= lim_{n to infty} frac{1}{big(1+(frac{x}{a})^nbig)^{frac{1}{n}}}$$
Now I am stuck, I don't know how to evaluate this limit










share|cite|improve this question









$endgroup$




Let $ t_n=frac{a^n}{a^n+x^n}$ and using root test
$$ displaystyle lim_{n to infty} {t_n}^{frac{1}{n}}= lim_{n to infty} left(frac{a^n}{a^n+x^n}right)^{frac{1}{n}}= lim_{n to infty} frac{1}{big(1+(frac{x}{a})^nbig)^{frac{1}{n}}}$$
Now I am stuck, I don't know how to evaluate this limit







real-analysis calculus sequences-and-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 20 '18 at 17:35









jirenjiren

766




766








  • 6




    $begingroup$
    What’s a definition of $e^x$?
    $endgroup$
    – R.Jackson
    Dec 20 '18 at 17:38










  • $begingroup$
    @R.Jackson Thanks for replying. But I don't get it. The exponent $frac{1}{n}$ in the denominator doesn't tends to infinity so how can we use the definition of $e^x$.
    $endgroup$
    – jiren
    Dec 20 '18 at 17:58
















  • 6




    $begingroup$
    What’s a definition of $e^x$?
    $endgroup$
    – R.Jackson
    Dec 20 '18 at 17:38










  • $begingroup$
    @R.Jackson Thanks for replying. But I don't get it. The exponent $frac{1}{n}$ in the denominator doesn't tends to infinity so how can we use the definition of $e^x$.
    $endgroup$
    – jiren
    Dec 20 '18 at 17:58










6




6




$begingroup$
What’s a definition of $e^x$?
$endgroup$
– R.Jackson
Dec 20 '18 at 17:38




$begingroup$
What’s a definition of $e^x$?
$endgroup$
– R.Jackson
Dec 20 '18 at 17:38












$begingroup$
@R.Jackson Thanks for replying. But I don't get it. The exponent $frac{1}{n}$ in the denominator doesn't tends to infinity so how can we use the definition of $e^x$.
$endgroup$
– jiren
Dec 20 '18 at 17:58






$begingroup$
@R.Jackson Thanks for replying. But I don't get it. The exponent $frac{1}{n}$ in the denominator doesn't tends to infinity so how can we use the definition of $e^x$.
$endgroup$
– jiren
Dec 20 '18 at 17:58












1 Answer
1






active

oldest

votes


















3












$begingroup$

$$x=a implies t_n=frac 12 $$
$$implies sum t_n text{ diverges}$$



$$|x|<|a|implies lim_{nto+infty}t_n=1$$
$$implies sum t_ntext{ diverges}$$



$$|x|>|a|implies t_nsim (frac ax)^n$$
$$implies sum t_n text{ converges}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047789%2ftest-the-convergence-of-series-sum-fracananxn-when-x-neq0%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    $$x=a implies t_n=frac 12 $$
    $$implies sum t_n text{ diverges}$$



    $$|x|<|a|implies lim_{nto+infty}t_n=1$$
    $$implies sum t_ntext{ diverges}$$



    $$|x|>|a|implies t_nsim (frac ax)^n$$
    $$implies sum t_n text{ converges}$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      $$x=a implies t_n=frac 12 $$
      $$implies sum t_n text{ diverges}$$



      $$|x|<|a|implies lim_{nto+infty}t_n=1$$
      $$implies sum t_ntext{ diverges}$$



      $$|x|>|a|implies t_nsim (frac ax)^n$$
      $$implies sum t_n text{ converges}$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        $$x=a implies t_n=frac 12 $$
        $$implies sum t_n text{ diverges}$$



        $$|x|<|a|implies lim_{nto+infty}t_n=1$$
        $$implies sum t_ntext{ diverges}$$



        $$|x|>|a|implies t_nsim (frac ax)^n$$
        $$implies sum t_n text{ converges}$$






        share|cite|improve this answer









        $endgroup$



        $$x=a implies t_n=frac 12 $$
        $$implies sum t_n text{ diverges}$$



        $$|x|<|a|implies lim_{nto+infty}t_n=1$$
        $$implies sum t_ntext{ diverges}$$



        $$|x|>|a|implies t_nsim (frac ax)^n$$
        $$implies sum t_n text{ converges}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 20 '18 at 18:41









        hamam_Abdallahhamam_Abdallah

        38.1k21634




        38.1k21634






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047789%2ftest-the-convergence-of-series-sum-fracananxn-when-x-neq0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen