Conjecture $Re,operatorname{Li}_2left(frac12+frac...
I numerically discovered the following conjecture:
$$Re,operatorname{Li}_2left(frac12+frac i6right)stackrel{color{gray}?}=frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).$$
It holds numerically with a precision of more than $30000$ decimal digits.
Could you suggest any ideas how to prove it?
Can we find a closed form for $Im,operatorname{Li}_2left(frac12+frac i6right)$?
Is there a general method to find closed forms of expressions of the form $Re,operatorname{Li}_2(p+iq)$, $Im,operatorname{Li}_2(p+iq)$ for $p,qinmathbb Q$?
calculus complex-analysis closed-form conjectures polylogarithm
add a comment |
I numerically discovered the following conjecture:
$$Re,operatorname{Li}_2left(frac12+frac i6right)stackrel{color{gray}?}=frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).$$
It holds numerically with a precision of more than $30000$ decimal digits.
Could you suggest any ideas how to prove it?
Can we find a closed form for $Im,operatorname{Li}_2left(frac12+frac i6right)$?
Is there a general method to find closed forms of expressions of the form $Re,operatorname{Li}_2(p+iq)$, $Im,operatorname{Li}_2(p+iq)$ for $p,qinmathbb Q$?
calculus complex-analysis closed-form conjectures polylogarithm
1
I love your conjecture. Maybe better than Ramanujan ! :)
– Hexacoordinate-C
Sep 6 '15 at 21:49
add a comment |
I numerically discovered the following conjecture:
$$Re,operatorname{Li}_2left(frac12+frac i6right)stackrel{color{gray}?}=frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).$$
It holds numerically with a precision of more than $30000$ decimal digits.
Could you suggest any ideas how to prove it?
Can we find a closed form for $Im,operatorname{Li}_2left(frac12+frac i6right)$?
Is there a general method to find closed forms of expressions of the form $Re,operatorname{Li}_2(p+iq)$, $Im,operatorname{Li}_2(p+iq)$ for $p,qinmathbb Q$?
calculus complex-analysis closed-form conjectures polylogarithm
I numerically discovered the following conjecture:
$$Re,operatorname{Li}_2left(frac12+frac i6right)stackrel{color{gray}?}=frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).$$
It holds numerically with a precision of more than $30000$ decimal digits.
Could you suggest any ideas how to prove it?
Can we find a closed form for $Im,operatorname{Li}_2left(frac12+frac i6right)$?
Is there a general method to find closed forms of expressions of the form $Re,operatorname{Li}_2(p+iq)$, $Im,operatorname{Li}_2(p+iq)$ for $p,qinmathbb Q$?
calculus complex-analysis closed-form conjectures polylogarithm
calculus complex-analysis closed-form conjectures polylogarithm
asked Sep 6 '15 at 20:27
Vladimir Reshetnikov
24.2k4119231
24.2k4119231
1
I love your conjecture. Maybe better than Ramanujan ! :)
– Hexacoordinate-C
Sep 6 '15 at 21:49
add a comment |
1
I love your conjecture. Maybe better than Ramanujan ! :)
– Hexacoordinate-C
Sep 6 '15 at 21:49
1
1
I love your conjecture. Maybe better than Ramanujan ! :)
– Hexacoordinate-C
Sep 6 '15 at 21:49
I love your conjecture. Maybe better than Ramanujan ! :)
– Hexacoordinate-C
Sep 6 '15 at 21:49
add a comment |
3 Answers
3
active
oldest
votes
I don't know how you got your conjecture but I checked and on further simplifications I found it to be correct.
We know that :
$$
{Li}_{2}(bar{z})=bar{{Li}_{2}(z)}
$$
So :
$$
Re{{Li}_{2}(z)}=frac{bar{{Li}_{2}(z)}+{Li}_{2}(z)}{2}
$$
So:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(frac{1}{2}-frac{i}{6})}{2}\
=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(1-(frac{1}{2}+frac{i}{6}))}{2}
$$
Now let's use:
$$
{Li}_{2}(z)+{Li}_{2}(1-z)=frac{{pi}^{2}}{6}-ln{z}ln{(1-z)}
$$
So we get:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(1-(frac{1}{2}+frac{i}{6}))}}{2}\
=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}}{2}
$$
Let's compute those logarithms:
$$
ln(frac{1}{2}pm frac{i}{6})=ln{(sqrt{frac{1}{2^2}+frac{1}{6^2}}{e}^{pm iarctan{frac{1}{3}}})}\
=ln{(sqrt{frac{5}{18}}{e}^{pm iarctan{frac{1}{3}}})}\
=frac{1}{2}ln{(frac{5}{18})}pm iarctan{frac{1}{3}}
$$
Taking their product:
$$
ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}=frac{1}{4}{ln{(frac{5}{18}})}^{2}+{(arctan{frac{1}{3}})}^{2}
$$
Finally:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{18}{5}})}^{2}-frac{1}{2}{(arctan{1/3})}^{2}\
=frac{7(pi)^2}{48}-frac{{(arctan{2})}^{2}}{3}-frac{{(arctan{3})}^{2}}{6}-frac{1}{8} {ln{frac{18}{5}}}^{2}
$$
There's a general formula using the same method. But the imaginary part doesn't have a known closed form:
$$
Re{{Li}_{2}(frac{1}{2}+iq)}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{1+4q^2}{4})}}^{2}-frac{{arctan{(2q)}}^{2}}{2}
$$
1
(+1) I would say it is pretty finished, your answer proves that the dilogarithm reflection formula gives a way for computing the closed form of $text{Re},text{Li}_2left(frac{1}{2}+iqright)$ for any $qinmathbb{R}$.
– Jack D'Aurizio
Sep 6 '15 at 21:16
1
Yes I was going to say that once I'm finished but there's no closed form for the imaginary part tough.
– Oussama Boussif
Sep 6 '15 at 21:17
1
@OussamaBoussif: You can say that again.
– Lucian
Sep 6 '15 at 23:49
2
@OussamaBoussif. Thanks for the great answer! I suppose Lucian meant that this is not the first time when we know a closed form for the real part of a polylogarithm, but not for its imaginary part.
– Vladimir Reshetnikov
Sep 7 '15 at 17:42
2
There are some know results: $$Im,operatorname{Li}_2(i)=G,$$ $$Im,operatorname{Li}_2(1+i)=G+fracpi4ln2,$$ $$Im,operatorname{Li}_2!left(frac{1+i}2right)=G-fracpi8ln2,$$ $$Im,operatorname{Li}_2left(ileft(2+sqrt3right)right)=frac23G-frac{5 pi}{12}lnleft(2-sqrt3right),$$ $$Im,operatorname{Li}_2!left(frac{1+i}{sqrt2}right)=frac{1-sqrt8}4G- frac{1+sqrt2}{16} pi^2+ frac{sqrt2}{32}psi^{(1)}!left(tfrac18right).$$
– Vladimir Reshetnikov
Sep 7 '15 at 18:42
|
show 3 more comments
First of all we know that:
$$
operatorname{Li}_2(z) = -operatorname{Li}_2left(frac{z}{z-1}right)-frac{1}{2}ln^2(1-z), quad z notin (1,infty).tag{$diamondsuit$}
$$
Furthermore, we have the following relationship between the dilogarithm and the Clausen functions:
$$operatorname{Li}_2left(e^{itheta}right) = operatorname{Sl}_2(theta)+ioperatorname{Cl}_2(theta), quad theta in [0,2pi).tag{$heartsuit$}$$
where $operatorname{Cl}_2$ and $operatorname{Sl}_2$ are the standard Clausen functions, defined as:
$$begin{align}
operatorname{Cl}_2(theta) &= sum_{k=1}^{infty}frac{sin(ktheta)}{k^2}, \
operatorname{Sl}_2(theta) &= sum_{k=1}^{infty}frac{cos(ktheta)}{k^2}.
end{align}$$
Using the relationship between SL-type Clausen functions and Bernoulli polynomials, we have that
$$
operatorname{Sl}_2(theta) = frac{pi^2}{6}-frac{pitheta}{2}+frac{theta^2}{4}, quad theta in [0,2pi).tag{$spadesuit$}
$$
Now let $z:=tfrac{1}{2}+tfrac{i}{6}$. Because $left|tfrac{z}{z-1}right| = 1$, the equation
$$
e^{itheta} = frac{z}{z-1} = -frac{4}{5}-frac{3}{5}i,
$$
has the only solution $theta = arctanleft(tfrac{3}{4}right) + pi$ in $[0,2pi)$.
Because of $(diamondsuit)$ and $(heartsuit)$ we have
$$
operatorname{Li}_2(z) = -color{red}{operatorname{Sl}_2(theta)} - i color{green}{operatorname{Cl}_2(theta)} - color{blue}{frac{1}{2}ln^2(1-z)},
$$
for $z=tfrac{1}{2}+tfrac{i}{6}$ and $theta = arctanleft(tfrac{3}{4}right) + pi$.
For the logarithm term we get
$$
Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{8}left(ln^2left(frac{18}{5}right)-(pi-2arctan 3)^2right)
$$
and
$$
Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
$$
We know that $color{red}{operatorname{Sl}_2(theta)}$ and $color{green}{operatorname{Cl}_2(theta)}$ are real quantities. By using $(spadesuit)$ for the SL-type Clausen term we get
$$
color{red}{operatorname{Sl}_2(theta)} = frac{pi^2}{12}-frac{1}{4}arctan^2left(frac{3}{4}right).
$$
Now we could obtain your conjectured closed-form:
$$
Releft[operatorname{Li}_2(z)right] = -color{red}{operatorname{Sl}_2(theta)} - Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).
$$
For the imaginary part we have
$$begin{align}
Imleft[operatorname{Li}_2(z)right] &= -color{green}{operatorname{Cl}_2(theta)} - Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} \ &= -operatorname{Cl}_2left(arctanleft(frac{3}{4}right)+piright)-frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
end{align}$$
By using $(diamondsuit), (heartsuit)$ and $(spadesuit)$, you could generalize this process for all $z in mathbb{C}$ such that $left|frac{z}{z-1}right|=1$.
add a comment |
This is an answer finding $Reoperatorname{Li}_2left(frac{1+ti}2right)$ via integration method. (Personally I don't like the reflection formula)
First, we restrict $tinmathbb R$. One can prove $Reoperatorname{Li}_2left(frac{1+ti}2right)$ is differentiable and the following changing the positions of signs is correct.
$$begin{aligned}
Reoperatorname{Li}_2left(frac{1+ti}2right)&=-frac12int_0^1lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}x\
&=-frac12intint_0^1frac{partial}{partial t}lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}xd t\
&=-intint_0^1frac{tx}{4-4x+(1+t^2)x^2}d xd t\
&=-intleft(frac1{1+t^2}arctan t+frac12cdotfrac t{1+t^2}lnfrac{1+t^2}4right)d t\
&=-frac12arctan^2t-frac18ln^2frac{1+t^2}4+C
end{aligned}$$
Substitute $t=0$ into the equation, we get $frac1{12}pi^2-frac12ln^22=0-frac18ln^24+C$, or $C=frac1{12}pi^2$.
Hence $$Reoperatorname{Li}_2left(frac{1+ti}2right)=frac1{12}pi^2-frac12arctan^2t-frac18ln^2frac{1+t^2}4$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1424600%2fconjecture-re-operatornameli-2-left-frac12-frac-i6-right-frac7-pi2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
I don't know how you got your conjecture but I checked and on further simplifications I found it to be correct.
We know that :
$$
{Li}_{2}(bar{z})=bar{{Li}_{2}(z)}
$$
So :
$$
Re{{Li}_{2}(z)}=frac{bar{{Li}_{2}(z)}+{Li}_{2}(z)}{2}
$$
So:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(frac{1}{2}-frac{i}{6})}{2}\
=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(1-(frac{1}{2}+frac{i}{6}))}{2}
$$
Now let's use:
$$
{Li}_{2}(z)+{Li}_{2}(1-z)=frac{{pi}^{2}}{6}-ln{z}ln{(1-z)}
$$
So we get:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(1-(frac{1}{2}+frac{i}{6}))}}{2}\
=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}}{2}
$$
Let's compute those logarithms:
$$
ln(frac{1}{2}pm frac{i}{6})=ln{(sqrt{frac{1}{2^2}+frac{1}{6^2}}{e}^{pm iarctan{frac{1}{3}}})}\
=ln{(sqrt{frac{5}{18}}{e}^{pm iarctan{frac{1}{3}}})}\
=frac{1}{2}ln{(frac{5}{18})}pm iarctan{frac{1}{3}}
$$
Taking their product:
$$
ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}=frac{1}{4}{ln{(frac{5}{18}})}^{2}+{(arctan{frac{1}{3}})}^{2}
$$
Finally:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{18}{5}})}^{2}-frac{1}{2}{(arctan{1/3})}^{2}\
=frac{7(pi)^2}{48}-frac{{(arctan{2})}^{2}}{3}-frac{{(arctan{3})}^{2}}{6}-frac{1}{8} {ln{frac{18}{5}}}^{2}
$$
There's a general formula using the same method. But the imaginary part doesn't have a known closed form:
$$
Re{{Li}_{2}(frac{1}{2}+iq)}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{1+4q^2}{4})}}^{2}-frac{{arctan{(2q)}}^{2}}{2}
$$
1
(+1) I would say it is pretty finished, your answer proves that the dilogarithm reflection formula gives a way for computing the closed form of $text{Re},text{Li}_2left(frac{1}{2}+iqright)$ for any $qinmathbb{R}$.
– Jack D'Aurizio
Sep 6 '15 at 21:16
1
Yes I was going to say that once I'm finished but there's no closed form for the imaginary part tough.
– Oussama Boussif
Sep 6 '15 at 21:17
1
@OussamaBoussif: You can say that again.
– Lucian
Sep 6 '15 at 23:49
2
@OussamaBoussif. Thanks for the great answer! I suppose Lucian meant that this is not the first time when we know a closed form for the real part of a polylogarithm, but not for its imaginary part.
– Vladimir Reshetnikov
Sep 7 '15 at 17:42
2
There are some know results: $$Im,operatorname{Li}_2(i)=G,$$ $$Im,operatorname{Li}_2(1+i)=G+fracpi4ln2,$$ $$Im,operatorname{Li}_2!left(frac{1+i}2right)=G-fracpi8ln2,$$ $$Im,operatorname{Li}_2left(ileft(2+sqrt3right)right)=frac23G-frac{5 pi}{12}lnleft(2-sqrt3right),$$ $$Im,operatorname{Li}_2!left(frac{1+i}{sqrt2}right)=frac{1-sqrt8}4G- frac{1+sqrt2}{16} pi^2+ frac{sqrt2}{32}psi^{(1)}!left(tfrac18right).$$
– Vladimir Reshetnikov
Sep 7 '15 at 18:42
|
show 3 more comments
I don't know how you got your conjecture but I checked and on further simplifications I found it to be correct.
We know that :
$$
{Li}_{2}(bar{z})=bar{{Li}_{2}(z)}
$$
So :
$$
Re{{Li}_{2}(z)}=frac{bar{{Li}_{2}(z)}+{Li}_{2}(z)}{2}
$$
So:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(frac{1}{2}-frac{i}{6})}{2}\
=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(1-(frac{1}{2}+frac{i}{6}))}{2}
$$
Now let's use:
$$
{Li}_{2}(z)+{Li}_{2}(1-z)=frac{{pi}^{2}}{6}-ln{z}ln{(1-z)}
$$
So we get:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(1-(frac{1}{2}+frac{i}{6}))}}{2}\
=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}}{2}
$$
Let's compute those logarithms:
$$
ln(frac{1}{2}pm frac{i}{6})=ln{(sqrt{frac{1}{2^2}+frac{1}{6^2}}{e}^{pm iarctan{frac{1}{3}}})}\
=ln{(sqrt{frac{5}{18}}{e}^{pm iarctan{frac{1}{3}}})}\
=frac{1}{2}ln{(frac{5}{18})}pm iarctan{frac{1}{3}}
$$
Taking their product:
$$
ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}=frac{1}{4}{ln{(frac{5}{18}})}^{2}+{(arctan{frac{1}{3}})}^{2}
$$
Finally:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{18}{5}})}^{2}-frac{1}{2}{(arctan{1/3})}^{2}\
=frac{7(pi)^2}{48}-frac{{(arctan{2})}^{2}}{3}-frac{{(arctan{3})}^{2}}{6}-frac{1}{8} {ln{frac{18}{5}}}^{2}
$$
There's a general formula using the same method. But the imaginary part doesn't have a known closed form:
$$
Re{{Li}_{2}(frac{1}{2}+iq)}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{1+4q^2}{4})}}^{2}-frac{{arctan{(2q)}}^{2}}{2}
$$
1
(+1) I would say it is pretty finished, your answer proves that the dilogarithm reflection formula gives a way for computing the closed form of $text{Re},text{Li}_2left(frac{1}{2}+iqright)$ for any $qinmathbb{R}$.
– Jack D'Aurizio
Sep 6 '15 at 21:16
1
Yes I was going to say that once I'm finished but there's no closed form for the imaginary part tough.
– Oussama Boussif
Sep 6 '15 at 21:17
1
@OussamaBoussif: You can say that again.
– Lucian
Sep 6 '15 at 23:49
2
@OussamaBoussif. Thanks for the great answer! I suppose Lucian meant that this is not the first time when we know a closed form for the real part of a polylogarithm, but not for its imaginary part.
– Vladimir Reshetnikov
Sep 7 '15 at 17:42
2
There are some know results: $$Im,operatorname{Li}_2(i)=G,$$ $$Im,operatorname{Li}_2(1+i)=G+fracpi4ln2,$$ $$Im,operatorname{Li}_2!left(frac{1+i}2right)=G-fracpi8ln2,$$ $$Im,operatorname{Li}_2left(ileft(2+sqrt3right)right)=frac23G-frac{5 pi}{12}lnleft(2-sqrt3right),$$ $$Im,operatorname{Li}_2!left(frac{1+i}{sqrt2}right)=frac{1-sqrt8}4G- frac{1+sqrt2}{16} pi^2+ frac{sqrt2}{32}psi^{(1)}!left(tfrac18right).$$
– Vladimir Reshetnikov
Sep 7 '15 at 18:42
|
show 3 more comments
I don't know how you got your conjecture but I checked and on further simplifications I found it to be correct.
We know that :
$$
{Li}_{2}(bar{z})=bar{{Li}_{2}(z)}
$$
So :
$$
Re{{Li}_{2}(z)}=frac{bar{{Li}_{2}(z)}+{Li}_{2}(z)}{2}
$$
So:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(frac{1}{2}-frac{i}{6})}{2}\
=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(1-(frac{1}{2}+frac{i}{6}))}{2}
$$
Now let's use:
$$
{Li}_{2}(z)+{Li}_{2}(1-z)=frac{{pi}^{2}}{6}-ln{z}ln{(1-z)}
$$
So we get:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(1-(frac{1}{2}+frac{i}{6}))}}{2}\
=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}}{2}
$$
Let's compute those logarithms:
$$
ln(frac{1}{2}pm frac{i}{6})=ln{(sqrt{frac{1}{2^2}+frac{1}{6^2}}{e}^{pm iarctan{frac{1}{3}}})}\
=ln{(sqrt{frac{5}{18}}{e}^{pm iarctan{frac{1}{3}}})}\
=frac{1}{2}ln{(frac{5}{18})}pm iarctan{frac{1}{3}}
$$
Taking their product:
$$
ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}=frac{1}{4}{ln{(frac{5}{18}})}^{2}+{(arctan{frac{1}{3}})}^{2}
$$
Finally:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{18}{5}})}^{2}-frac{1}{2}{(arctan{1/3})}^{2}\
=frac{7(pi)^2}{48}-frac{{(arctan{2})}^{2}}{3}-frac{{(arctan{3})}^{2}}{6}-frac{1}{8} {ln{frac{18}{5}}}^{2}
$$
There's a general formula using the same method. But the imaginary part doesn't have a known closed form:
$$
Re{{Li}_{2}(frac{1}{2}+iq)}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{1+4q^2}{4})}}^{2}-frac{{arctan{(2q)}}^{2}}{2}
$$
I don't know how you got your conjecture but I checked and on further simplifications I found it to be correct.
We know that :
$$
{Li}_{2}(bar{z})=bar{{Li}_{2}(z)}
$$
So :
$$
Re{{Li}_{2}(z)}=frac{bar{{Li}_{2}(z)}+{Li}_{2}(z)}{2}
$$
So:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(frac{1}{2}-frac{i}{6})}{2}\
=frac{{Li}_{2}(frac{1}{2}+frac{i}{6})+{Li}_{2}(1-(frac{1}{2}+frac{i}{6}))}{2}
$$
Now let's use:
$$
{Li}_{2}(z)+{Li}_{2}(1-z)=frac{{pi}^{2}}{6}-ln{z}ln{(1-z)}
$$
So we get:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(1-(frac{1}{2}+frac{i}{6}))}}{2}\
=frac{frac{{pi}^{2}}{6}-ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}}{2}
$$
Let's compute those logarithms:
$$
ln(frac{1}{2}pm frac{i}{6})=ln{(sqrt{frac{1}{2^2}+frac{1}{6^2}}{e}^{pm iarctan{frac{1}{3}}})}\
=ln{(sqrt{frac{5}{18}}{e}^{pm iarctan{frac{1}{3}}})}\
=frac{1}{2}ln{(frac{5}{18})}pm iarctan{frac{1}{3}}
$$
Taking their product:
$$
ln{(frac{1}{2}+frac{i}{6})}ln{(frac{1}{2}-frac{i}{6})}=frac{1}{4}{ln{(frac{5}{18}})}^{2}+{(arctan{frac{1}{3}})}^{2}
$$
Finally:
$$
Re{{Li}_{2}(frac{1}{2}+frac{i}{6})}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{18}{5}})}^{2}-frac{1}{2}{(arctan{1/3})}^{2}\
=frac{7(pi)^2}{48}-frac{{(arctan{2})}^{2}}{3}-frac{{(arctan{3})}^{2}}{6}-frac{1}{8} {ln{frac{18}{5}}}^{2}
$$
There's a general formula using the same method. But the imaginary part doesn't have a known closed form:
$$
Re{{Li}_{2}(frac{1}{2}+iq)}=frac{{pi}^{2}}{12}-frac{1}{8}{ln{(frac{1+4q^2}{4})}}^{2}-frac{{arctan{(2q)}}^{2}}{2}
$$
edited Sep 11 '15 at 7:56
answered Sep 6 '15 at 20:59
Oussama Boussif
2,887722
2,887722
1
(+1) I would say it is pretty finished, your answer proves that the dilogarithm reflection formula gives a way for computing the closed form of $text{Re},text{Li}_2left(frac{1}{2}+iqright)$ for any $qinmathbb{R}$.
– Jack D'Aurizio
Sep 6 '15 at 21:16
1
Yes I was going to say that once I'm finished but there's no closed form for the imaginary part tough.
– Oussama Boussif
Sep 6 '15 at 21:17
1
@OussamaBoussif: You can say that again.
– Lucian
Sep 6 '15 at 23:49
2
@OussamaBoussif. Thanks for the great answer! I suppose Lucian meant that this is not the first time when we know a closed form for the real part of a polylogarithm, but not for its imaginary part.
– Vladimir Reshetnikov
Sep 7 '15 at 17:42
2
There are some know results: $$Im,operatorname{Li}_2(i)=G,$$ $$Im,operatorname{Li}_2(1+i)=G+fracpi4ln2,$$ $$Im,operatorname{Li}_2!left(frac{1+i}2right)=G-fracpi8ln2,$$ $$Im,operatorname{Li}_2left(ileft(2+sqrt3right)right)=frac23G-frac{5 pi}{12}lnleft(2-sqrt3right),$$ $$Im,operatorname{Li}_2!left(frac{1+i}{sqrt2}right)=frac{1-sqrt8}4G- frac{1+sqrt2}{16} pi^2+ frac{sqrt2}{32}psi^{(1)}!left(tfrac18right).$$
– Vladimir Reshetnikov
Sep 7 '15 at 18:42
|
show 3 more comments
1
(+1) I would say it is pretty finished, your answer proves that the dilogarithm reflection formula gives a way for computing the closed form of $text{Re},text{Li}_2left(frac{1}{2}+iqright)$ for any $qinmathbb{R}$.
– Jack D'Aurizio
Sep 6 '15 at 21:16
1
Yes I was going to say that once I'm finished but there's no closed form for the imaginary part tough.
– Oussama Boussif
Sep 6 '15 at 21:17
1
@OussamaBoussif: You can say that again.
– Lucian
Sep 6 '15 at 23:49
2
@OussamaBoussif. Thanks for the great answer! I suppose Lucian meant that this is not the first time when we know a closed form for the real part of a polylogarithm, but not for its imaginary part.
– Vladimir Reshetnikov
Sep 7 '15 at 17:42
2
There are some know results: $$Im,operatorname{Li}_2(i)=G,$$ $$Im,operatorname{Li}_2(1+i)=G+fracpi4ln2,$$ $$Im,operatorname{Li}_2!left(frac{1+i}2right)=G-fracpi8ln2,$$ $$Im,operatorname{Li}_2left(ileft(2+sqrt3right)right)=frac23G-frac{5 pi}{12}lnleft(2-sqrt3right),$$ $$Im,operatorname{Li}_2!left(frac{1+i}{sqrt2}right)=frac{1-sqrt8}4G- frac{1+sqrt2}{16} pi^2+ frac{sqrt2}{32}psi^{(1)}!left(tfrac18right).$$
– Vladimir Reshetnikov
Sep 7 '15 at 18:42
1
1
(+1) I would say it is pretty finished, your answer proves that the dilogarithm reflection formula gives a way for computing the closed form of $text{Re},text{Li}_2left(frac{1}{2}+iqright)$ for any $qinmathbb{R}$.
– Jack D'Aurizio
Sep 6 '15 at 21:16
(+1) I would say it is pretty finished, your answer proves that the dilogarithm reflection formula gives a way for computing the closed form of $text{Re},text{Li}_2left(frac{1}{2}+iqright)$ for any $qinmathbb{R}$.
– Jack D'Aurizio
Sep 6 '15 at 21:16
1
1
Yes I was going to say that once I'm finished but there's no closed form for the imaginary part tough.
– Oussama Boussif
Sep 6 '15 at 21:17
Yes I was going to say that once I'm finished but there's no closed form for the imaginary part tough.
– Oussama Boussif
Sep 6 '15 at 21:17
1
1
@OussamaBoussif: You can say that again.
– Lucian
Sep 6 '15 at 23:49
@OussamaBoussif: You can say that again.
– Lucian
Sep 6 '15 at 23:49
2
2
@OussamaBoussif. Thanks for the great answer! I suppose Lucian meant that this is not the first time when we know a closed form for the real part of a polylogarithm, but not for its imaginary part.
– Vladimir Reshetnikov
Sep 7 '15 at 17:42
@OussamaBoussif. Thanks for the great answer! I suppose Lucian meant that this is not the first time when we know a closed form for the real part of a polylogarithm, but not for its imaginary part.
– Vladimir Reshetnikov
Sep 7 '15 at 17:42
2
2
There are some know results: $$Im,operatorname{Li}_2(i)=G,$$ $$Im,operatorname{Li}_2(1+i)=G+fracpi4ln2,$$ $$Im,operatorname{Li}_2!left(frac{1+i}2right)=G-fracpi8ln2,$$ $$Im,operatorname{Li}_2left(ileft(2+sqrt3right)right)=frac23G-frac{5 pi}{12}lnleft(2-sqrt3right),$$ $$Im,operatorname{Li}_2!left(frac{1+i}{sqrt2}right)=frac{1-sqrt8}4G- frac{1+sqrt2}{16} pi^2+ frac{sqrt2}{32}psi^{(1)}!left(tfrac18right).$$
– Vladimir Reshetnikov
Sep 7 '15 at 18:42
There are some know results: $$Im,operatorname{Li}_2(i)=G,$$ $$Im,operatorname{Li}_2(1+i)=G+fracpi4ln2,$$ $$Im,operatorname{Li}_2!left(frac{1+i}2right)=G-fracpi8ln2,$$ $$Im,operatorname{Li}_2left(ileft(2+sqrt3right)right)=frac23G-frac{5 pi}{12}lnleft(2-sqrt3right),$$ $$Im,operatorname{Li}_2!left(frac{1+i}{sqrt2}right)=frac{1-sqrt8}4G- frac{1+sqrt2}{16} pi^2+ frac{sqrt2}{32}psi^{(1)}!left(tfrac18right).$$
– Vladimir Reshetnikov
Sep 7 '15 at 18:42
|
show 3 more comments
First of all we know that:
$$
operatorname{Li}_2(z) = -operatorname{Li}_2left(frac{z}{z-1}right)-frac{1}{2}ln^2(1-z), quad z notin (1,infty).tag{$diamondsuit$}
$$
Furthermore, we have the following relationship between the dilogarithm and the Clausen functions:
$$operatorname{Li}_2left(e^{itheta}right) = operatorname{Sl}_2(theta)+ioperatorname{Cl}_2(theta), quad theta in [0,2pi).tag{$heartsuit$}$$
where $operatorname{Cl}_2$ and $operatorname{Sl}_2$ are the standard Clausen functions, defined as:
$$begin{align}
operatorname{Cl}_2(theta) &= sum_{k=1}^{infty}frac{sin(ktheta)}{k^2}, \
operatorname{Sl}_2(theta) &= sum_{k=1}^{infty}frac{cos(ktheta)}{k^2}.
end{align}$$
Using the relationship between SL-type Clausen functions and Bernoulli polynomials, we have that
$$
operatorname{Sl}_2(theta) = frac{pi^2}{6}-frac{pitheta}{2}+frac{theta^2}{4}, quad theta in [0,2pi).tag{$spadesuit$}
$$
Now let $z:=tfrac{1}{2}+tfrac{i}{6}$. Because $left|tfrac{z}{z-1}right| = 1$, the equation
$$
e^{itheta} = frac{z}{z-1} = -frac{4}{5}-frac{3}{5}i,
$$
has the only solution $theta = arctanleft(tfrac{3}{4}right) + pi$ in $[0,2pi)$.
Because of $(diamondsuit)$ and $(heartsuit)$ we have
$$
operatorname{Li}_2(z) = -color{red}{operatorname{Sl}_2(theta)} - i color{green}{operatorname{Cl}_2(theta)} - color{blue}{frac{1}{2}ln^2(1-z)},
$$
for $z=tfrac{1}{2}+tfrac{i}{6}$ and $theta = arctanleft(tfrac{3}{4}right) + pi$.
For the logarithm term we get
$$
Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{8}left(ln^2left(frac{18}{5}right)-(pi-2arctan 3)^2right)
$$
and
$$
Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
$$
We know that $color{red}{operatorname{Sl}_2(theta)}$ and $color{green}{operatorname{Cl}_2(theta)}$ are real quantities. By using $(spadesuit)$ for the SL-type Clausen term we get
$$
color{red}{operatorname{Sl}_2(theta)} = frac{pi^2}{12}-frac{1}{4}arctan^2left(frac{3}{4}right).
$$
Now we could obtain your conjectured closed-form:
$$
Releft[operatorname{Li}_2(z)right] = -color{red}{operatorname{Sl}_2(theta)} - Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).
$$
For the imaginary part we have
$$begin{align}
Imleft[operatorname{Li}_2(z)right] &= -color{green}{operatorname{Cl}_2(theta)} - Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} \ &= -operatorname{Cl}_2left(arctanleft(frac{3}{4}right)+piright)-frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
end{align}$$
By using $(diamondsuit), (heartsuit)$ and $(spadesuit)$, you could generalize this process for all $z in mathbb{C}$ such that $left|frac{z}{z-1}right|=1$.
add a comment |
First of all we know that:
$$
operatorname{Li}_2(z) = -operatorname{Li}_2left(frac{z}{z-1}right)-frac{1}{2}ln^2(1-z), quad z notin (1,infty).tag{$diamondsuit$}
$$
Furthermore, we have the following relationship between the dilogarithm and the Clausen functions:
$$operatorname{Li}_2left(e^{itheta}right) = operatorname{Sl}_2(theta)+ioperatorname{Cl}_2(theta), quad theta in [0,2pi).tag{$heartsuit$}$$
where $operatorname{Cl}_2$ and $operatorname{Sl}_2$ are the standard Clausen functions, defined as:
$$begin{align}
operatorname{Cl}_2(theta) &= sum_{k=1}^{infty}frac{sin(ktheta)}{k^2}, \
operatorname{Sl}_2(theta) &= sum_{k=1}^{infty}frac{cos(ktheta)}{k^2}.
end{align}$$
Using the relationship between SL-type Clausen functions and Bernoulli polynomials, we have that
$$
operatorname{Sl}_2(theta) = frac{pi^2}{6}-frac{pitheta}{2}+frac{theta^2}{4}, quad theta in [0,2pi).tag{$spadesuit$}
$$
Now let $z:=tfrac{1}{2}+tfrac{i}{6}$. Because $left|tfrac{z}{z-1}right| = 1$, the equation
$$
e^{itheta} = frac{z}{z-1} = -frac{4}{5}-frac{3}{5}i,
$$
has the only solution $theta = arctanleft(tfrac{3}{4}right) + pi$ in $[0,2pi)$.
Because of $(diamondsuit)$ and $(heartsuit)$ we have
$$
operatorname{Li}_2(z) = -color{red}{operatorname{Sl}_2(theta)} - i color{green}{operatorname{Cl}_2(theta)} - color{blue}{frac{1}{2}ln^2(1-z)},
$$
for $z=tfrac{1}{2}+tfrac{i}{6}$ and $theta = arctanleft(tfrac{3}{4}right) + pi$.
For the logarithm term we get
$$
Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{8}left(ln^2left(frac{18}{5}right)-(pi-2arctan 3)^2right)
$$
and
$$
Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
$$
We know that $color{red}{operatorname{Sl}_2(theta)}$ and $color{green}{operatorname{Cl}_2(theta)}$ are real quantities. By using $(spadesuit)$ for the SL-type Clausen term we get
$$
color{red}{operatorname{Sl}_2(theta)} = frac{pi^2}{12}-frac{1}{4}arctan^2left(frac{3}{4}right).
$$
Now we could obtain your conjectured closed-form:
$$
Releft[operatorname{Li}_2(z)right] = -color{red}{operatorname{Sl}_2(theta)} - Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).
$$
For the imaginary part we have
$$begin{align}
Imleft[operatorname{Li}_2(z)right] &= -color{green}{operatorname{Cl}_2(theta)} - Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} \ &= -operatorname{Cl}_2left(arctanleft(frac{3}{4}right)+piright)-frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
end{align}$$
By using $(diamondsuit), (heartsuit)$ and $(spadesuit)$, you could generalize this process for all $z in mathbb{C}$ such that $left|frac{z}{z-1}right|=1$.
add a comment |
First of all we know that:
$$
operatorname{Li}_2(z) = -operatorname{Li}_2left(frac{z}{z-1}right)-frac{1}{2}ln^2(1-z), quad z notin (1,infty).tag{$diamondsuit$}
$$
Furthermore, we have the following relationship between the dilogarithm and the Clausen functions:
$$operatorname{Li}_2left(e^{itheta}right) = operatorname{Sl}_2(theta)+ioperatorname{Cl}_2(theta), quad theta in [0,2pi).tag{$heartsuit$}$$
where $operatorname{Cl}_2$ and $operatorname{Sl}_2$ are the standard Clausen functions, defined as:
$$begin{align}
operatorname{Cl}_2(theta) &= sum_{k=1}^{infty}frac{sin(ktheta)}{k^2}, \
operatorname{Sl}_2(theta) &= sum_{k=1}^{infty}frac{cos(ktheta)}{k^2}.
end{align}$$
Using the relationship between SL-type Clausen functions and Bernoulli polynomials, we have that
$$
operatorname{Sl}_2(theta) = frac{pi^2}{6}-frac{pitheta}{2}+frac{theta^2}{4}, quad theta in [0,2pi).tag{$spadesuit$}
$$
Now let $z:=tfrac{1}{2}+tfrac{i}{6}$. Because $left|tfrac{z}{z-1}right| = 1$, the equation
$$
e^{itheta} = frac{z}{z-1} = -frac{4}{5}-frac{3}{5}i,
$$
has the only solution $theta = arctanleft(tfrac{3}{4}right) + pi$ in $[0,2pi)$.
Because of $(diamondsuit)$ and $(heartsuit)$ we have
$$
operatorname{Li}_2(z) = -color{red}{operatorname{Sl}_2(theta)} - i color{green}{operatorname{Cl}_2(theta)} - color{blue}{frac{1}{2}ln^2(1-z)},
$$
for $z=tfrac{1}{2}+tfrac{i}{6}$ and $theta = arctanleft(tfrac{3}{4}right) + pi$.
For the logarithm term we get
$$
Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{8}left(ln^2left(frac{18}{5}right)-(pi-2arctan 3)^2right)
$$
and
$$
Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
$$
We know that $color{red}{operatorname{Sl}_2(theta)}$ and $color{green}{operatorname{Cl}_2(theta)}$ are real quantities. By using $(spadesuit)$ for the SL-type Clausen term we get
$$
color{red}{operatorname{Sl}_2(theta)} = frac{pi^2}{12}-frac{1}{4}arctan^2left(frac{3}{4}right).
$$
Now we could obtain your conjectured closed-form:
$$
Releft[operatorname{Li}_2(z)right] = -color{red}{operatorname{Sl}_2(theta)} - Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).
$$
For the imaginary part we have
$$begin{align}
Imleft[operatorname{Li}_2(z)right] &= -color{green}{operatorname{Cl}_2(theta)} - Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} \ &= -operatorname{Cl}_2left(arctanleft(frac{3}{4}right)+piright)-frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
end{align}$$
By using $(diamondsuit), (heartsuit)$ and $(spadesuit)$, you could generalize this process for all $z in mathbb{C}$ such that $left|frac{z}{z-1}right|=1$.
First of all we know that:
$$
operatorname{Li}_2(z) = -operatorname{Li}_2left(frac{z}{z-1}right)-frac{1}{2}ln^2(1-z), quad z notin (1,infty).tag{$diamondsuit$}
$$
Furthermore, we have the following relationship between the dilogarithm and the Clausen functions:
$$operatorname{Li}_2left(e^{itheta}right) = operatorname{Sl}_2(theta)+ioperatorname{Cl}_2(theta), quad theta in [0,2pi).tag{$heartsuit$}$$
where $operatorname{Cl}_2$ and $operatorname{Sl}_2$ are the standard Clausen functions, defined as:
$$begin{align}
operatorname{Cl}_2(theta) &= sum_{k=1}^{infty}frac{sin(ktheta)}{k^2}, \
operatorname{Sl}_2(theta) &= sum_{k=1}^{infty}frac{cos(ktheta)}{k^2}.
end{align}$$
Using the relationship between SL-type Clausen functions and Bernoulli polynomials, we have that
$$
operatorname{Sl}_2(theta) = frac{pi^2}{6}-frac{pitheta}{2}+frac{theta^2}{4}, quad theta in [0,2pi).tag{$spadesuit$}
$$
Now let $z:=tfrac{1}{2}+tfrac{i}{6}$. Because $left|tfrac{z}{z-1}right| = 1$, the equation
$$
e^{itheta} = frac{z}{z-1} = -frac{4}{5}-frac{3}{5}i,
$$
has the only solution $theta = arctanleft(tfrac{3}{4}right) + pi$ in $[0,2pi)$.
Because of $(diamondsuit)$ and $(heartsuit)$ we have
$$
operatorname{Li}_2(z) = -color{red}{operatorname{Sl}_2(theta)} - i color{green}{operatorname{Cl}_2(theta)} - color{blue}{frac{1}{2}ln^2(1-z)},
$$
for $z=tfrac{1}{2}+tfrac{i}{6}$ and $theta = arctanleft(tfrac{3}{4}right) + pi$.
For the logarithm term we get
$$
Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{8}left(ln^2left(frac{18}{5}right)-(pi-2arctan 3)^2right)
$$
and
$$
Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
$$
We know that $color{red}{operatorname{Sl}_2(theta)}$ and $color{green}{operatorname{Cl}_2(theta)}$ are real quantities. By using $(spadesuit)$ for the SL-type Clausen term we get
$$
color{red}{operatorname{Sl}_2(theta)} = frac{pi^2}{12}-frac{1}{4}arctan^2left(frac{3}{4}right).
$$
Now we could obtain your conjectured closed-form:
$$
Releft[operatorname{Li}_2(z)right] = -color{red}{operatorname{Sl}_2(theta)} - Re{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} = frac{7pi^2}{48}-frac{arctan^22}3-frac{arctan^23}6-frac18ln^2!left(frac{18}5right).
$$
For the imaginary part we have
$$begin{align}
Imleft[operatorname{Li}_2(z)right] &= -color{green}{operatorname{Cl}_2(theta)} - Im{left[color{blue}{frac{1}{2}ln^2(1-z)}right]} \ &= -operatorname{Cl}_2left(arctanleft(frac{3}{4}right)+piright)-frac{1}{4}lnleft(frac{18}{5}right)(pi-2arctan 3).
end{align}$$
By using $(diamondsuit), (heartsuit)$ and $(spadesuit)$, you could generalize this process for all $z in mathbb{C}$ such that $left|frac{z}{z-1}right|=1$.
edited Sep 11 '15 at 0:43
answered Sep 11 '15 at 0:09
user153012
6,27822277
6,27822277
add a comment |
add a comment |
This is an answer finding $Reoperatorname{Li}_2left(frac{1+ti}2right)$ via integration method. (Personally I don't like the reflection formula)
First, we restrict $tinmathbb R$. One can prove $Reoperatorname{Li}_2left(frac{1+ti}2right)$ is differentiable and the following changing the positions of signs is correct.
$$begin{aligned}
Reoperatorname{Li}_2left(frac{1+ti}2right)&=-frac12int_0^1lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}x\
&=-frac12intint_0^1frac{partial}{partial t}lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}xd t\
&=-intint_0^1frac{tx}{4-4x+(1+t^2)x^2}d xd t\
&=-intleft(frac1{1+t^2}arctan t+frac12cdotfrac t{1+t^2}lnfrac{1+t^2}4right)d t\
&=-frac12arctan^2t-frac18ln^2frac{1+t^2}4+C
end{aligned}$$
Substitute $t=0$ into the equation, we get $frac1{12}pi^2-frac12ln^22=0-frac18ln^24+C$, or $C=frac1{12}pi^2$.
Hence $$Reoperatorname{Li}_2left(frac{1+ti}2right)=frac1{12}pi^2-frac12arctan^2t-frac18ln^2frac{1+t^2}4$$
add a comment |
This is an answer finding $Reoperatorname{Li}_2left(frac{1+ti}2right)$ via integration method. (Personally I don't like the reflection formula)
First, we restrict $tinmathbb R$. One can prove $Reoperatorname{Li}_2left(frac{1+ti}2right)$ is differentiable and the following changing the positions of signs is correct.
$$begin{aligned}
Reoperatorname{Li}_2left(frac{1+ti}2right)&=-frac12int_0^1lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}x\
&=-frac12intint_0^1frac{partial}{partial t}lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}xd t\
&=-intint_0^1frac{tx}{4-4x+(1+t^2)x^2}d xd t\
&=-intleft(frac1{1+t^2}arctan t+frac12cdotfrac t{1+t^2}lnfrac{1+t^2}4right)d t\
&=-frac12arctan^2t-frac18ln^2frac{1+t^2}4+C
end{aligned}$$
Substitute $t=0$ into the equation, we get $frac1{12}pi^2-frac12ln^22=0-frac18ln^24+C$, or $C=frac1{12}pi^2$.
Hence $$Reoperatorname{Li}_2left(frac{1+ti}2right)=frac1{12}pi^2-frac12arctan^2t-frac18ln^2frac{1+t^2}4$$
add a comment |
This is an answer finding $Reoperatorname{Li}_2left(frac{1+ti}2right)$ via integration method. (Personally I don't like the reflection formula)
First, we restrict $tinmathbb R$. One can prove $Reoperatorname{Li}_2left(frac{1+ti}2right)$ is differentiable and the following changing the positions of signs is correct.
$$begin{aligned}
Reoperatorname{Li}_2left(frac{1+ti}2right)&=-frac12int_0^1lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}x\
&=-frac12intint_0^1frac{partial}{partial t}lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}xd t\
&=-intint_0^1frac{tx}{4-4x+(1+t^2)x^2}d xd t\
&=-intleft(frac1{1+t^2}arctan t+frac12cdotfrac t{1+t^2}lnfrac{1+t^2}4right)d t\
&=-frac12arctan^2t-frac18ln^2frac{1+t^2}4+C
end{aligned}$$
Substitute $t=0$ into the equation, we get $frac1{12}pi^2-frac12ln^22=0-frac18ln^24+C$, or $C=frac1{12}pi^2$.
Hence $$Reoperatorname{Li}_2left(frac{1+ti}2right)=frac1{12}pi^2-frac12arctan^2t-frac18ln^2frac{1+t^2}4$$
This is an answer finding $Reoperatorname{Li}_2left(frac{1+ti}2right)$ via integration method. (Personally I don't like the reflection formula)
First, we restrict $tinmathbb R$. One can prove $Reoperatorname{Li}_2left(frac{1+ti}2right)$ is differentiable and the following changing the positions of signs is correct.
$$begin{aligned}
Reoperatorname{Li}_2left(frac{1+ti}2right)&=-frac12int_0^1lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}x\
&=-frac12intint_0^1frac{partial}{partial t}lnleft(1-x+frac{1+t^2}4x^2right)frac{d x}xd t\
&=-intint_0^1frac{tx}{4-4x+(1+t^2)x^2}d xd t\
&=-intleft(frac1{1+t^2}arctan t+frac12cdotfrac t{1+t^2}lnfrac{1+t^2}4right)d t\
&=-frac12arctan^2t-frac18ln^2frac{1+t^2}4+C
end{aligned}$$
Substitute $t=0$ into the equation, we get $frac1{12}pi^2-frac12ln^22=0-frac18ln^24+C$, or $C=frac1{12}pi^2$.
Hence $$Reoperatorname{Li}_2left(frac{1+ti}2right)=frac1{12}pi^2-frac12arctan^2t-frac18ln^2frac{1+t^2}4$$
answered Dec 2 '18 at 3:31
Kemono Chen
2,569437
2,569437
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1424600%2fconjecture-re-operatornameli-2-left-frac12-frac-i6-right-frac7-pi2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
I love your conjecture. Maybe better than Ramanujan ! :)
– Hexacoordinate-C
Sep 6 '15 at 21:49