Prove that $lfloor sqrt{(p-1)p} rfloor = p - 1$ and likewise $lceil sqrt{(p-1)p} rceil = p$.
$begingroup$
Here $p$ is prime but is not necessary for the problem just that $p ge 0$. I suspect that a statement like $p-1 le sqrt{(p-1)p} le p$ would be the case but I am not certain how to establish this condition.
elementary-number-theory maxima-minima floor-function ceiling-function
$endgroup$
add a comment |
$begingroup$
Here $p$ is prime but is not necessary for the problem just that $p ge 0$. I suspect that a statement like $p-1 le sqrt{(p-1)p} le p$ would be the case but I am not certain how to establish this condition.
elementary-number-theory maxima-minima floor-function ceiling-function
$endgroup$
$begingroup$
We need that $pge 1$, since otherwise the square root is not defined. That is also a sufficient condition.
$endgroup$
– I like Serena
Dec 12 '18 at 17:48
add a comment |
$begingroup$
Here $p$ is prime but is not necessary for the problem just that $p ge 0$. I suspect that a statement like $p-1 le sqrt{(p-1)p} le p$ would be the case but I am not certain how to establish this condition.
elementary-number-theory maxima-minima floor-function ceiling-function
$endgroup$
Here $p$ is prime but is not necessary for the problem just that $p ge 0$. I suspect that a statement like $p-1 le sqrt{(p-1)p} le p$ would be the case but I am not certain how to establish this condition.
elementary-number-theory maxima-minima floor-function ceiling-function
elementary-number-theory maxima-minima floor-function ceiling-function
edited Dec 12 '18 at 17:53
Bernard
120k740115
120k740115
asked Dec 12 '18 at 17:24
Lorenz H MenkeLorenz H Menke
10011
10011
$begingroup$
We need that $pge 1$, since otherwise the square root is not defined. That is also a sufficient condition.
$endgroup$
– I like Serena
Dec 12 '18 at 17:48
add a comment |
$begingroup$
We need that $pge 1$, since otherwise the square root is not defined. That is also a sufficient condition.
$endgroup$
– I like Serena
Dec 12 '18 at 17:48
$begingroup$
We need that $pge 1$, since otherwise the square root is not defined. That is also a sufficient condition.
$endgroup$
– I like Serena
Dec 12 '18 at 17:48
$begingroup$
We need that $pge 1$, since otherwise the square root is not defined. That is also a sufficient condition.
$endgroup$
– I like Serena
Dec 12 '18 at 17:48
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: $(p-1)^2 le (p-1)p le p^2$ for $p ge 0$
$endgroup$
add a comment |
$begingroup$
For $p>1$,$$(p-1)^2=p^2-2p+1<p^2-p<p^2$$
and
$$p-1<sqrt{(p-1)p}<p.$$
As the extreme members are integer,
$$p-1leleftlfloorsqrt{(p-1)p}rightrfloorleleftlceilsqrt{(p-1)p}rightrceille p.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036979%2fprove-that-lfloor-sqrtp-1p-rfloor-p-1-and-likewise-lceil-sqrtp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $(p-1)^2 le (p-1)p le p^2$ for $p ge 0$
$endgroup$
add a comment |
$begingroup$
Hint: $(p-1)^2 le (p-1)p le p^2$ for $p ge 0$
$endgroup$
add a comment |
$begingroup$
Hint: $(p-1)^2 le (p-1)p le p^2$ for $p ge 0$
$endgroup$
Hint: $(p-1)^2 le (p-1)p le p^2$ for $p ge 0$
answered Dec 12 '18 at 17:29
karakfakarakfa
1,995811
1,995811
add a comment |
add a comment |
$begingroup$
For $p>1$,$$(p-1)^2=p^2-2p+1<p^2-p<p^2$$
and
$$p-1<sqrt{(p-1)p}<p.$$
As the extreme members are integer,
$$p-1leleftlfloorsqrt{(p-1)p}rightrfloorleleftlceilsqrt{(p-1)p}rightrceille p.$$
$endgroup$
add a comment |
$begingroup$
For $p>1$,$$(p-1)^2=p^2-2p+1<p^2-p<p^2$$
and
$$p-1<sqrt{(p-1)p}<p.$$
As the extreme members are integer,
$$p-1leleftlfloorsqrt{(p-1)p}rightrfloorleleftlceilsqrt{(p-1)p}rightrceille p.$$
$endgroup$
add a comment |
$begingroup$
For $p>1$,$$(p-1)^2=p^2-2p+1<p^2-p<p^2$$
and
$$p-1<sqrt{(p-1)p}<p.$$
As the extreme members are integer,
$$p-1leleftlfloorsqrt{(p-1)p}rightrfloorleleftlceilsqrt{(p-1)p}rightrceille p.$$
$endgroup$
For $p>1$,$$(p-1)^2=p^2-2p+1<p^2-p<p^2$$
and
$$p-1<sqrt{(p-1)p}<p.$$
As the extreme members are integer,
$$p-1leleftlfloorsqrt{(p-1)p}rightrfloorleleftlceilsqrt{(p-1)p}rightrceille p.$$
answered Dec 12 '18 at 17:31
Yves DaoustYves Daoust
127k673226
127k673226
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036979%2fprove-that-lfloor-sqrtp-1p-rfloor-p-1-and-likewise-lceil-sqrtp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
We need that $pge 1$, since otherwise the square root is not defined. That is also a sufficient condition.
$endgroup$
– I like Serena
Dec 12 '18 at 17:48