Tricomi equation canonical form and solution












1












$begingroup$


Consider the Tricomi equation



$$u_{xx}+xu_{yy}=0$$



With the transformation $(r,q)=left(-frac{2}{3}x^{3/2},yright)$, I found the canonical form but I could not solve it:



$$v_{qq}+v_{rr}+dfrac1{3r}v_r=0.$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    This note from the arxiv will help you arxiv.org/pdf/1311.3338v2.pdf
    $endgroup$
    – Autolatry
    Nov 18 '14 at 14:52
















1












$begingroup$


Consider the Tricomi equation



$$u_{xx}+xu_{yy}=0$$



With the transformation $(r,q)=left(-frac{2}{3}x^{3/2},yright)$, I found the canonical form but I could not solve it:



$$v_{qq}+v_{rr}+dfrac1{3r}v_r=0.$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    This note from the arxiv will help you arxiv.org/pdf/1311.3338v2.pdf
    $endgroup$
    – Autolatry
    Nov 18 '14 at 14:52














1












1








1


1



$begingroup$


Consider the Tricomi equation



$$u_{xx}+xu_{yy}=0$$



With the transformation $(r,q)=left(-frac{2}{3}x^{3/2},yright)$, I found the canonical form but I could not solve it:



$$v_{qq}+v_{rr}+dfrac1{3r}v_r=0.$$










share|cite|improve this question











$endgroup$




Consider the Tricomi equation



$$u_{xx}+xu_{yy}=0$$



With the transformation $(r,q)=left(-frac{2}{3}x^{3/2},yright)$, I found the canonical form but I could not solve it:



$$v_{qq}+v_{rr}+dfrac1{3r}v_r=0.$$







pde linear-pde






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 18:26









Harry49

6,21331132




6,21331132










asked Nov 18 '14 at 14:42









Joemak BoblinkeJoemak Boblinke

895




895












  • $begingroup$
    This note from the arxiv will help you arxiv.org/pdf/1311.3338v2.pdf
    $endgroup$
    – Autolatry
    Nov 18 '14 at 14:52


















  • $begingroup$
    This note from the arxiv will help you arxiv.org/pdf/1311.3338v2.pdf
    $endgroup$
    – Autolatry
    Nov 18 '14 at 14:52
















$begingroup$
This note from the arxiv will help you arxiv.org/pdf/1311.3338v2.pdf
$endgroup$
– Autolatry
Nov 18 '14 at 14:52




$begingroup$
This note from the arxiv will help you arxiv.org/pdf/1311.3338v2.pdf
$endgroup$
– Autolatry
Nov 18 '14 at 14:52










1 Answer
1






active

oldest

votes


















0












$begingroup$

In the elliptic case $x>0$, the change of coordinates $(r,q) = left(-x^{3/2},frac{3}{2}yright)$ in the Tricomi equation gives the Euler-Poisson-Darboux equation
$$
u_{xx} + xu_{yy} = tfrac{9}{4}xleft( u_{qq} + u_{rr} + frac{1}{3r}u_rright) = 0 .
$$

The functions $r,q$ satisfy the Beltrami differential equations
$$
r_x = -sqrt{x}, q_y,qquad r_y = frac{1}{sqrt{x}}, q_x .
$$

Particular solutions of the Tricomi equation can be found here.





Further reading: p. 162-163 of



R. Courant, D. Hilbert: Methods of Mathematical Physics vol. II: "Partial differential equations". Wiley-VCH, 1962. doi:10.1002/9783527617234






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1027640%2ftricomi-equation-canonical-form-and-solution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    In the elliptic case $x>0$, the change of coordinates $(r,q) = left(-x^{3/2},frac{3}{2}yright)$ in the Tricomi equation gives the Euler-Poisson-Darboux equation
    $$
    u_{xx} + xu_{yy} = tfrac{9}{4}xleft( u_{qq} + u_{rr} + frac{1}{3r}u_rright) = 0 .
    $$

    The functions $r,q$ satisfy the Beltrami differential equations
    $$
    r_x = -sqrt{x}, q_y,qquad r_y = frac{1}{sqrt{x}}, q_x .
    $$

    Particular solutions of the Tricomi equation can be found here.





    Further reading: p. 162-163 of



    R. Courant, D. Hilbert: Methods of Mathematical Physics vol. II: "Partial differential equations". Wiley-VCH, 1962. doi:10.1002/9783527617234






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      In the elliptic case $x>0$, the change of coordinates $(r,q) = left(-x^{3/2},frac{3}{2}yright)$ in the Tricomi equation gives the Euler-Poisson-Darboux equation
      $$
      u_{xx} + xu_{yy} = tfrac{9}{4}xleft( u_{qq} + u_{rr} + frac{1}{3r}u_rright) = 0 .
      $$

      The functions $r,q$ satisfy the Beltrami differential equations
      $$
      r_x = -sqrt{x}, q_y,qquad r_y = frac{1}{sqrt{x}}, q_x .
      $$

      Particular solutions of the Tricomi equation can be found here.





      Further reading: p. 162-163 of



      R. Courant, D. Hilbert: Methods of Mathematical Physics vol. II: "Partial differential equations". Wiley-VCH, 1962. doi:10.1002/9783527617234






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        In the elliptic case $x>0$, the change of coordinates $(r,q) = left(-x^{3/2},frac{3}{2}yright)$ in the Tricomi equation gives the Euler-Poisson-Darboux equation
        $$
        u_{xx} + xu_{yy} = tfrac{9}{4}xleft( u_{qq} + u_{rr} + frac{1}{3r}u_rright) = 0 .
        $$

        The functions $r,q$ satisfy the Beltrami differential equations
        $$
        r_x = -sqrt{x}, q_y,qquad r_y = frac{1}{sqrt{x}}, q_x .
        $$

        Particular solutions of the Tricomi equation can be found here.





        Further reading: p. 162-163 of



        R. Courant, D. Hilbert: Methods of Mathematical Physics vol. II: "Partial differential equations". Wiley-VCH, 1962. doi:10.1002/9783527617234






        share|cite|improve this answer











        $endgroup$



        In the elliptic case $x>0$, the change of coordinates $(r,q) = left(-x^{3/2},frac{3}{2}yright)$ in the Tricomi equation gives the Euler-Poisson-Darboux equation
        $$
        u_{xx} + xu_{yy} = tfrac{9}{4}xleft( u_{qq} + u_{rr} + frac{1}{3r}u_rright) = 0 .
        $$

        The functions $r,q$ satisfy the Beltrami differential equations
        $$
        r_x = -sqrt{x}, q_y,qquad r_y = frac{1}{sqrt{x}}, q_x .
        $$

        Particular solutions of the Tricomi equation can be found here.





        Further reading: p. 162-163 of



        R. Courant, D. Hilbert: Methods of Mathematical Physics vol. II: "Partial differential equations". Wiley-VCH, 1962. doi:10.1002/9783527617234







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 12 '18 at 18:32

























        answered Dec 12 '18 at 13:10









        Harry49Harry49

        6,21331132




        6,21331132






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1027640%2ftricomi-equation-canonical-form-and-solution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen