Derivative of a trace with Kronecker product












0














Say I have the following expression:
$f=mathbf{Tr} (S^T L S)$,where $S=(Bbigotimes A)H$ Then what's the derivative of $f$ with respect to $A$ and $B$ ?










share|cite|improve this question



























    0














    Say I have the following expression:
    $f=mathbf{Tr} (S^T L S)$,where $S=(Bbigotimes A)H$ Then what's the derivative of $f$ with respect to $A$ and $B$ ?










    share|cite|improve this question

























      0












      0








      0







      Say I have the following expression:
      $f=mathbf{Tr} (S^T L S)$,where $S=(Bbigotimes A)H$ Then what's the derivative of $f$ with respect to $A$ and $B$ ?










      share|cite|improve this question













      Say I have the following expression:
      $f=mathbf{Tr} (S^T L S)$,where $S=(Bbigotimes A)H$ Then what's the derivative of $f$ with respect to $A$ and $B$ ?







      derivatives chain-rule kronecker-product






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 31 '16 at 6:39









      FuliXiong

      12




      12






















          1 Answer
          1






          active

          oldest

          votes


















          1














          First find the SVD of
          $$H=sum_k(sigma_ku_k)v_k^T = sum_kw_kv_k^T$$
          Then use the trace/Frobenius product $big(A!:!B={rm Tr}(A^TB)big)$ to rewrite the function before finding its differential and the gradients.
          $$eqalign{
          f &= L:SS^T crcr
          df &= L:(dS,S^T+S,dS^T) cr
          &= (L+L^T):dS,S^T cr
          &= (L+L^T),S:dS cr
          &= (L+L^T),S:(dBotimes A+Botimes dA),H cr
          &= sum_k,,(L+L^T),S:(dBotimes A+Botimes dA),w_kv_k^T cr
          &= sum_k,,(L+L^T),Sv_k:(dBotimes A+Botimes dA),w_k cr
          &= sum_k,,q_k:{rm vec}(AW_k,dB^T+dA,W_kB^T) cr
          &= sum_k,,Q_k:(AW_k,dB^T+dA,W_kB^T) cr
          &= sum_k,,Q_kBW_k^T:dA + Q_k^TAW_k:dB crcr
          frac{partial f}{partial A} &= sum_k,Q_kBW_k^T,,,,,,,,
          frac{partial f}{partial B} = sum_k,Q_k^TAW_k cr
          }$$

          where
          $$eqalign{
          {rm vec}(Q_k) &= q_k &= (L+L^T),Sv_k cr
          {rm vec}(W_k) &= w_k &= sigma_k v_k cr
          }$$






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1909404%2fderivative-of-a-trace-with-kronecker-product%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            First find the SVD of
            $$H=sum_k(sigma_ku_k)v_k^T = sum_kw_kv_k^T$$
            Then use the trace/Frobenius product $big(A!:!B={rm Tr}(A^TB)big)$ to rewrite the function before finding its differential and the gradients.
            $$eqalign{
            f &= L:SS^T crcr
            df &= L:(dS,S^T+S,dS^T) cr
            &= (L+L^T):dS,S^T cr
            &= (L+L^T),S:dS cr
            &= (L+L^T),S:(dBotimes A+Botimes dA),H cr
            &= sum_k,,(L+L^T),S:(dBotimes A+Botimes dA),w_kv_k^T cr
            &= sum_k,,(L+L^T),Sv_k:(dBotimes A+Botimes dA),w_k cr
            &= sum_k,,q_k:{rm vec}(AW_k,dB^T+dA,W_kB^T) cr
            &= sum_k,,Q_k:(AW_k,dB^T+dA,W_kB^T) cr
            &= sum_k,,Q_kBW_k^T:dA + Q_k^TAW_k:dB crcr
            frac{partial f}{partial A} &= sum_k,Q_kBW_k^T,,,,,,,,
            frac{partial f}{partial B} = sum_k,Q_k^TAW_k cr
            }$$

            where
            $$eqalign{
            {rm vec}(Q_k) &= q_k &= (L+L^T),Sv_k cr
            {rm vec}(W_k) &= w_k &= sigma_k v_k cr
            }$$






            share|cite|improve this answer




























              1














              First find the SVD of
              $$H=sum_k(sigma_ku_k)v_k^T = sum_kw_kv_k^T$$
              Then use the trace/Frobenius product $big(A!:!B={rm Tr}(A^TB)big)$ to rewrite the function before finding its differential and the gradients.
              $$eqalign{
              f &= L:SS^T crcr
              df &= L:(dS,S^T+S,dS^T) cr
              &= (L+L^T):dS,S^T cr
              &= (L+L^T),S:dS cr
              &= (L+L^T),S:(dBotimes A+Botimes dA),H cr
              &= sum_k,,(L+L^T),S:(dBotimes A+Botimes dA),w_kv_k^T cr
              &= sum_k,,(L+L^T),Sv_k:(dBotimes A+Botimes dA),w_k cr
              &= sum_k,,q_k:{rm vec}(AW_k,dB^T+dA,W_kB^T) cr
              &= sum_k,,Q_k:(AW_k,dB^T+dA,W_kB^T) cr
              &= sum_k,,Q_kBW_k^T:dA + Q_k^TAW_k:dB crcr
              frac{partial f}{partial A} &= sum_k,Q_kBW_k^T,,,,,,,,
              frac{partial f}{partial B} = sum_k,Q_k^TAW_k cr
              }$$

              where
              $$eqalign{
              {rm vec}(Q_k) &= q_k &= (L+L^T),Sv_k cr
              {rm vec}(W_k) &= w_k &= sigma_k v_k cr
              }$$






              share|cite|improve this answer


























                1












                1








                1






                First find the SVD of
                $$H=sum_k(sigma_ku_k)v_k^T = sum_kw_kv_k^T$$
                Then use the trace/Frobenius product $big(A!:!B={rm Tr}(A^TB)big)$ to rewrite the function before finding its differential and the gradients.
                $$eqalign{
                f &= L:SS^T crcr
                df &= L:(dS,S^T+S,dS^T) cr
                &= (L+L^T):dS,S^T cr
                &= (L+L^T),S:dS cr
                &= (L+L^T),S:(dBotimes A+Botimes dA),H cr
                &= sum_k,,(L+L^T),S:(dBotimes A+Botimes dA),w_kv_k^T cr
                &= sum_k,,(L+L^T),Sv_k:(dBotimes A+Botimes dA),w_k cr
                &= sum_k,,q_k:{rm vec}(AW_k,dB^T+dA,W_kB^T) cr
                &= sum_k,,Q_k:(AW_k,dB^T+dA,W_kB^T) cr
                &= sum_k,,Q_kBW_k^T:dA + Q_k^TAW_k:dB crcr
                frac{partial f}{partial A} &= sum_k,Q_kBW_k^T,,,,,,,,
                frac{partial f}{partial B} = sum_k,Q_k^TAW_k cr
                }$$

                where
                $$eqalign{
                {rm vec}(Q_k) &= q_k &= (L+L^T),Sv_k cr
                {rm vec}(W_k) &= w_k &= sigma_k v_k cr
                }$$






                share|cite|improve this answer














                First find the SVD of
                $$H=sum_k(sigma_ku_k)v_k^T = sum_kw_kv_k^T$$
                Then use the trace/Frobenius product $big(A!:!B={rm Tr}(A^TB)big)$ to rewrite the function before finding its differential and the gradients.
                $$eqalign{
                f &= L:SS^T crcr
                df &= L:(dS,S^T+S,dS^T) cr
                &= (L+L^T):dS,S^T cr
                &= (L+L^T),S:dS cr
                &= (L+L^T),S:(dBotimes A+Botimes dA),H cr
                &= sum_k,,(L+L^T),S:(dBotimes A+Botimes dA),w_kv_k^T cr
                &= sum_k,,(L+L^T),Sv_k:(dBotimes A+Botimes dA),w_k cr
                &= sum_k,,q_k:{rm vec}(AW_k,dB^T+dA,W_kB^T) cr
                &= sum_k,,Q_k:(AW_k,dB^T+dA,W_kB^T) cr
                &= sum_k,,Q_kBW_k^T:dA + Q_k^TAW_k:dB crcr
                frac{partial f}{partial A} &= sum_k,Q_kBW_k^T,,,,,,,,
                frac{partial f}{partial B} = sum_k,Q_k^TAW_k cr
                }$$

                where
                $$eqalign{
                {rm vec}(Q_k) &= q_k &= (L+L^T),Sv_k cr
                {rm vec}(W_k) &= w_k &= sigma_k v_k cr
                }$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 2 '18 at 21:11

























                answered Oct 15 '16 at 5:28









                greg

                7,5351821




                7,5351821






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1909404%2fderivative-of-a-trace-with-kronecker-product%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen