Quasi-Newton Methods no-change Condition Requirement












0














In standard quasi-newton methods for fixed point iteration, it looks there is two required conditions. The first one is secant condition:



$$J_{k+1} Delta x_{k} = Delta f_k $$



where $Delta f_k = f(x_{k+1}) - f(x_k)$, $Delta x_k = x_{k+1} - x_k$ and $J_{k+1}$ is the approximated Jocabian.



Furthermore, another common requirement is the following so-called no-change condition:



$$J_{k+1}q = J_k q$$



for each q such that:



$$q^{T}Delta x_{k}=0 $$



I couldn't understand the necessity of the second condition. Why do we avoid a new information along any direction q orthogonal to $Delta x_k$?










share|cite|improve this question



























    0














    In standard quasi-newton methods for fixed point iteration, it looks there is two required conditions. The first one is secant condition:



    $$J_{k+1} Delta x_{k} = Delta f_k $$



    where $Delta f_k = f(x_{k+1}) - f(x_k)$, $Delta x_k = x_{k+1} - x_k$ and $J_{k+1}$ is the approximated Jocabian.



    Furthermore, another common requirement is the following so-called no-change condition:



    $$J_{k+1}q = J_k q$$



    for each q such that:



    $$q^{T}Delta x_{k}=0 $$



    I couldn't understand the necessity of the second condition. Why do we avoid a new information along any direction q orthogonal to $Delta x_k$?










    share|cite|improve this question

























      0












      0








      0







      In standard quasi-newton methods for fixed point iteration, it looks there is two required conditions. The first one is secant condition:



      $$J_{k+1} Delta x_{k} = Delta f_k $$



      where $Delta f_k = f(x_{k+1}) - f(x_k)$, $Delta x_k = x_{k+1} - x_k$ and $J_{k+1}$ is the approximated Jocabian.



      Furthermore, another common requirement is the following so-called no-change condition:



      $$J_{k+1}q = J_k q$$



      for each q such that:



      $$q^{T}Delta x_{k}=0 $$



      I couldn't understand the necessity of the second condition. Why do we avoid a new information along any direction q orthogonal to $Delta x_k$?










      share|cite|improve this question













      In standard quasi-newton methods for fixed point iteration, it looks there is two required conditions. The first one is secant condition:



      $$J_{k+1} Delta x_{k} = Delta f_k $$



      where $Delta f_k = f(x_{k+1}) - f(x_k)$, $Delta x_k = x_{k+1} - x_k$ and $J_{k+1}$ is the approximated Jocabian.



      Furthermore, another common requirement is the following so-called no-change condition:



      $$J_{k+1}q = J_k q$$



      for each q such that:



      $$q^{T}Delta x_{k}=0 $$



      I couldn't understand the necessity of the second condition. Why do we avoid a new information along any direction q orthogonal to $Delta x_k$?







      convex-optimization nonlinear-optimization newton-raphson






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 3 '18 at 0:10









      arincbulgur

      11




      11






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023415%2fquasi-newton-methods-no-change-condition-requirement%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023415%2fquasi-newton-methods-no-change-condition-requirement%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen