How does following formula of the Lie bracket of two vector fields arise?
$begingroup$
Let X be a smooth manifold and $v, w in Gamma(TX)$ be two vector fields. Under the natural correspondence of vector fields and derivations on $C^infty(X)$ let $delta, epsilon: C^infty(X) rightarrow C^infty(X)$ be the corresponding derivations.
Then the commutator $[delta, epsilon] = delta circ epsilon - epsilon circ delta$ is another derivation. Define the Lie bracket $[v,w]$ as the vector field corresponding to this commutator. Using local coordinates on X, we can express the action of the two derivations on some $a in C^infty(X)$ as
$$delta(a) = sum v_i frac{partial a}{partial x_i} text{ and } epsilon(a) = sum w_i frac{partial a}{partial x_i}$$
Using this how can $[v,w]$ be expressed using the same local coordinates? I suspect the answer is the following, but I don't know how to derive it.
$$[v,w] = sum_{i,j} bigg(v_i frac{partial w_j}{partial x_i}- w_i frac{partial v_j}{partial x_i}bigg) frac{partial}{partial x_j}$$
calculus geometry differential-geometry manifolds
$endgroup$
add a comment |
$begingroup$
Let X be a smooth manifold and $v, w in Gamma(TX)$ be two vector fields. Under the natural correspondence of vector fields and derivations on $C^infty(X)$ let $delta, epsilon: C^infty(X) rightarrow C^infty(X)$ be the corresponding derivations.
Then the commutator $[delta, epsilon] = delta circ epsilon - epsilon circ delta$ is another derivation. Define the Lie bracket $[v,w]$ as the vector field corresponding to this commutator. Using local coordinates on X, we can express the action of the two derivations on some $a in C^infty(X)$ as
$$delta(a) = sum v_i frac{partial a}{partial x_i} text{ and } epsilon(a) = sum w_i frac{partial a}{partial x_i}$$
Using this how can $[v,w]$ be expressed using the same local coordinates? I suspect the answer is the following, but I don't know how to derive it.
$$[v,w] = sum_{i,j} bigg(v_i frac{partial w_j}{partial x_i}- w_i frac{partial v_j}{partial x_i}bigg) frac{partial}{partial x_j}$$
calculus geometry differential-geometry manifolds
$endgroup$
add a comment |
$begingroup$
Let X be a smooth manifold and $v, w in Gamma(TX)$ be two vector fields. Under the natural correspondence of vector fields and derivations on $C^infty(X)$ let $delta, epsilon: C^infty(X) rightarrow C^infty(X)$ be the corresponding derivations.
Then the commutator $[delta, epsilon] = delta circ epsilon - epsilon circ delta$ is another derivation. Define the Lie bracket $[v,w]$ as the vector field corresponding to this commutator. Using local coordinates on X, we can express the action of the two derivations on some $a in C^infty(X)$ as
$$delta(a) = sum v_i frac{partial a}{partial x_i} text{ and } epsilon(a) = sum w_i frac{partial a}{partial x_i}$$
Using this how can $[v,w]$ be expressed using the same local coordinates? I suspect the answer is the following, but I don't know how to derive it.
$$[v,w] = sum_{i,j} bigg(v_i frac{partial w_j}{partial x_i}- w_i frac{partial v_j}{partial x_i}bigg) frac{partial}{partial x_j}$$
calculus geometry differential-geometry manifolds
$endgroup$
Let X be a smooth manifold and $v, w in Gamma(TX)$ be two vector fields. Under the natural correspondence of vector fields and derivations on $C^infty(X)$ let $delta, epsilon: C^infty(X) rightarrow C^infty(X)$ be the corresponding derivations.
Then the commutator $[delta, epsilon] = delta circ epsilon - epsilon circ delta$ is another derivation. Define the Lie bracket $[v,w]$ as the vector field corresponding to this commutator. Using local coordinates on X, we can express the action of the two derivations on some $a in C^infty(X)$ as
$$delta(a) = sum v_i frac{partial a}{partial x_i} text{ and } epsilon(a) = sum w_i frac{partial a}{partial x_i}$$
Using this how can $[v,w]$ be expressed using the same local coordinates? I suspect the answer is the following, but I don't know how to derive it.
$$[v,w] = sum_{i,j} bigg(v_i frac{partial w_j}{partial x_i}- w_i frac{partial v_j}{partial x_i}bigg) frac{partial}{partial x_j}$$
calculus geometry differential-geometry manifolds
calculus geometry differential-geometry manifolds
asked Dec 16 '18 at 21:12
gengen
4932521
4932521
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your suspicion is correct. In the same local coordinates you have
begin{equation*}
begin{aligned}
[v,w](a)&=deltacirc epsilon(a)-epsiloncirc delta(a)\
&=Big(sum_i v_ifrac{partial}{partial x_i}Big(sum_j w_jfrac{partial a}{partial x_j}Big)Big)-Big(sum_j w_jfrac{partial}{partial x_j}Big(sum_i v_ifrac{partial a}{partial x_i}Big)Big)\
&=sum_{i,j} Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}+v_iw_jfrac{partial^2a}{partial x_ix_j}Big)-sum_{j,i} Big(w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}+w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}-w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}Big)+sum_{i,j} Big(v_iw_jfrac{partial^2a}{partial x_ix_j}-w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial a}{partial x_j},
end{aligned}
end{equation*}
where we smoothness of $a$ to cancel $frac{partial^2a}{partial x_ix_j}-frac{partial^2a}{partial x_jx_i}=0.$ Therefore
$$[v,w]=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial}{partial x_j}.$$
$endgroup$
add a comment |
$begingroup$
Associating the vector field $v_i$ with the differential operator $v:=v_ipartial^i$ gives $vwf=v_ipartial^i(w_jpartial^jf)$ for a sufficiently nice function $f$. The product rule, plus the symmetry of derivatives to delete the second-order terms, gives $[v,,w]f=Rf$, where $R$ is the expression for $[v,,w]$ you desire. The rest is an exercise.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043166%2fhow-does-following-formula-of-the-lie-bracket-of-two-vector-fields-arise%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your suspicion is correct. In the same local coordinates you have
begin{equation*}
begin{aligned}
[v,w](a)&=deltacirc epsilon(a)-epsiloncirc delta(a)\
&=Big(sum_i v_ifrac{partial}{partial x_i}Big(sum_j w_jfrac{partial a}{partial x_j}Big)Big)-Big(sum_j w_jfrac{partial}{partial x_j}Big(sum_i v_ifrac{partial a}{partial x_i}Big)Big)\
&=sum_{i,j} Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}+v_iw_jfrac{partial^2a}{partial x_ix_j}Big)-sum_{j,i} Big(w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}+w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}-w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}Big)+sum_{i,j} Big(v_iw_jfrac{partial^2a}{partial x_ix_j}-w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial a}{partial x_j},
end{aligned}
end{equation*}
where we smoothness of $a$ to cancel $frac{partial^2a}{partial x_ix_j}-frac{partial^2a}{partial x_jx_i}=0.$ Therefore
$$[v,w]=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial}{partial x_j}.$$
$endgroup$
add a comment |
$begingroup$
Your suspicion is correct. In the same local coordinates you have
begin{equation*}
begin{aligned}
[v,w](a)&=deltacirc epsilon(a)-epsiloncirc delta(a)\
&=Big(sum_i v_ifrac{partial}{partial x_i}Big(sum_j w_jfrac{partial a}{partial x_j}Big)Big)-Big(sum_j w_jfrac{partial}{partial x_j}Big(sum_i v_ifrac{partial a}{partial x_i}Big)Big)\
&=sum_{i,j} Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}+v_iw_jfrac{partial^2a}{partial x_ix_j}Big)-sum_{j,i} Big(w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}+w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}-w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}Big)+sum_{i,j} Big(v_iw_jfrac{partial^2a}{partial x_ix_j}-w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial a}{partial x_j},
end{aligned}
end{equation*}
where we smoothness of $a$ to cancel $frac{partial^2a}{partial x_ix_j}-frac{partial^2a}{partial x_jx_i}=0.$ Therefore
$$[v,w]=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial}{partial x_j}.$$
$endgroup$
add a comment |
$begingroup$
Your suspicion is correct. In the same local coordinates you have
begin{equation*}
begin{aligned}
[v,w](a)&=deltacirc epsilon(a)-epsiloncirc delta(a)\
&=Big(sum_i v_ifrac{partial}{partial x_i}Big(sum_j w_jfrac{partial a}{partial x_j}Big)Big)-Big(sum_j w_jfrac{partial}{partial x_j}Big(sum_i v_ifrac{partial a}{partial x_i}Big)Big)\
&=sum_{i,j} Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}+v_iw_jfrac{partial^2a}{partial x_ix_j}Big)-sum_{j,i} Big(w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}+w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}-w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}Big)+sum_{i,j} Big(v_iw_jfrac{partial^2a}{partial x_ix_j}-w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial a}{partial x_j},
end{aligned}
end{equation*}
where we smoothness of $a$ to cancel $frac{partial^2a}{partial x_ix_j}-frac{partial^2a}{partial x_jx_i}=0.$ Therefore
$$[v,w]=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial}{partial x_j}.$$
$endgroup$
Your suspicion is correct. In the same local coordinates you have
begin{equation*}
begin{aligned}
[v,w](a)&=deltacirc epsilon(a)-epsiloncirc delta(a)\
&=Big(sum_i v_ifrac{partial}{partial x_i}Big(sum_j w_jfrac{partial a}{partial x_j}Big)Big)-Big(sum_j w_jfrac{partial}{partial x_j}Big(sum_i v_ifrac{partial a}{partial x_i}Big)Big)\
&=sum_{i,j} Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}+v_iw_jfrac{partial^2a}{partial x_ix_j}Big)-sum_{j,i} Big(w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}+w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}frac{partial a}{partial x_j}-w_jfrac{partial v_i}{partial x_j}frac{partial a}{partial x_i}Big)+sum_{i,j} Big(v_iw_jfrac{partial^2a}{partial x_ix_j}-w_jv_ifrac{partial^2a}{partial x_jx_i}Big)\
&=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial a}{partial x_j},
end{aligned}
end{equation*}
where we smoothness of $a$ to cancel $frac{partial^2a}{partial x_ix_j}-frac{partial^2a}{partial x_jx_i}=0.$ Therefore
$$[v,w]=sum_{i,j}Big(v_ifrac{partial w_j}{partial x_i}-w_ifrac{partial v_j}{partial x_i}Big)frac{partial}{partial x_j}.$$
answered Dec 19 '18 at 21:15
positrón0802positrón0802
4,353520
4,353520
add a comment |
add a comment |
$begingroup$
Associating the vector field $v_i$ with the differential operator $v:=v_ipartial^i$ gives $vwf=v_ipartial^i(w_jpartial^jf)$ for a sufficiently nice function $f$. The product rule, plus the symmetry of derivatives to delete the second-order terms, gives $[v,,w]f=Rf$, where $R$ is the expression for $[v,,w]$ you desire. The rest is an exercise.
$endgroup$
add a comment |
$begingroup$
Associating the vector field $v_i$ with the differential operator $v:=v_ipartial^i$ gives $vwf=v_ipartial^i(w_jpartial^jf)$ for a sufficiently nice function $f$. The product rule, plus the symmetry of derivatives to delete the second-order terms, gives $[v,,w]f=Rf$, where $R$ is the expression for $[v,,w]$ you desire. The rest is an exercise.
$endgroup$
add a comment |
$begingroup$
Associating the vector field $v_i$ with the differential operator $v:=v_ipartial^i$ gives $vwf=v_ipartial^i(w_jpartial^jf)$ for a sufficiently nice function $f$. The product rule, plus the symmetry of derivatives to delete the second-order terms, gives $[v,,w]f=Rf$, where $R$ is the expression for $[v,,w]$ you desire. The rest is an exercise.
$endgroup$
Associating the vector field $v_i$ with the differential operator $v:=v_ipartial^i$ gives $vwf=v_ipartial^i(w_jpartial^jf)$ for a sufficiently nice function $f$. The product rule, plus the symmetry of derivatives to delete the second-order terms, gives $[v,,w]f=Rf$, where $R$ is the expression for $[v,,w]$ you desire. The rest is an exercise.
answered Dec 16 '18 at 21:16
J.G.J.G.
27.1k22843
27.1k22843
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043166%2fhow-does-following-formula-of-the-lie-bracket-of-two-vector-fields-arise%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown