Prove $f(x) = x^2sinleft(frac{1}{x}right)$ is Lipschitz (no use of derivative)












1












$begingroup$



Prove that $f:mathbb{R}to mathbb{R}$ such that
$$ f(x) = left{
begin{array}{c l}
x^2, sinleft(frac{1}{x}right) & ,quad xneq 0\
0 & ,quad x=0
end{array} right.$$

is Lipschitz (without use of derivatives).




Attempt. I am aware (Lipschitz-continuous $f(x)=x^2cdot sinleft(frac{1}{x}right)$)
that: $$|f(x)-f(y)|leq 3|x-y| ~~~forall~x,~yin mathbb{R},$$
but I am looking for a proof, without use of derivatives.
I tried: for $x,yneq 0$:



begin{eqnarray}
x^2sinfrac{1}{x} - y^2 sinfrac{1}{y}
&=& (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right ),nonumber
end{eqnarray}

so: $$left | x^2sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
leq |x^2 - y^2| + y^2 left | sinfrac{1}{x} - sinfrac{1}{y} right |.$$

Since:
$$left | sinfrac{1}{x} - sinfrac{1}{y} right | leq left| frac{1}{x} - frac{1}{y}right |= frac{|x - y|}{xy},$$
we get:
$$left | x^2 sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
leq left(x+y+frac{y}{x}right)|x-y|.$$

Unfortunatelly , the quantity $x+y+frac{y}{x}$ grows to
$+infty$, either for large $x$, or for $xapprox 0.$



Thanks in advance for the help.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$



    Prove that $f:mathbb{R}to mathbb{R}$ such that
    $$ f(x) = left{
    begin{array}{c l}
    x^2, sinleft(frac{1}{x}right) & ,quad xneq 0\
    0 & ,quad x=0
    end{array} right.$$

    is Lipschitz (without use of derivatives).




    Attempt. I am aware (Lipschitz-continuous $f(x)=x^2cdot sinleft(frac{1}{x}right)$)
    that: $$|f(x)-f(y)|leq 3|x-y| ~~~forall~x,~yin mathbb{R},$$
    but I am looking for a proof, without use of derivatives.
    I tried: for $x,yneq 0$:



    begin{eqnarray}
    x^2sinfrac{1}{x} - y^2 sinfrac{1}{y}
    &=& (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right ),nonumber
    end{eqnarray}

    so: $$left | x^2sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
    leq |x^2 - y^2| + y^2 left | sinfrac{1}{x} - sinfrac{1}{y} right |.$$

    Since:
    $$left | sinfrac{1}{x} - sinfrac{1}{y} right | leq left| frac{1}{x} - frac{1}{y}right |= frac{|x - y|}{xy},$$
    we get:
    $$left | x^2 sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
    leq left(x+y+frac{y}{x}right)|x-y|.$$

    Unfortunatelly , the quantity $x+y+frac{y}{x}$ grows to
    $+infty$, either for large $x$, or for $xapprox 0.$



    Thanks in advance for the help.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$



      Prove that $f:mathbb{R}to mathbb{R}$ such that
      $$ f(x) = left{
      begin{array}{c l}
      x^2, sinleft(frac{1}{x}right) & ,quad xneq 0\
      0 & ,quad x=0
      end{array} right.$$

      is Lipschitz (without use of derivatives).




      Attempt. I am aware (Lipschitz-continuous $f(x)=x^2cdot sinleft(frac{1}{x}right)$)
      that: $$|f(x)-f(y)|leq 3|x-y| ~~~forall~x,~yin mathbb{R},$$
      but I am looking for a proof, without use of derivatives.
      I tried: for $x,yneq 0$:



      begin{eqnarray}
      x^2sinfrac{1}{x} - y^2 sinfrac{1}{y}
      &=& (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right ),nonumber
      end{eqnarray}

      so: $$left | x^2sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
      leq |x^2 - y^2| + y^2 left | sinfrac{1}{x} - sinfrac{1}{y} right |.$$

      Since:
      $$left | sinfrac{1}{x} - sinfrac{1}{y} right | leq left| frac{1}{x} - frac{1}{y}right |= frac{|x - y|}{xy},$$
      we get:
      $$left | x^2 sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
      leq left(x+y+frac{y}{x}right)|x-y|.$$

      Unfortunatelly , the quantity $x+y+frac{y}{x}$ grows to
      $+infty$, either for large $x$, or for $xapprox 0.$



      Thanks in advance for the help.










      share|cite|improve this question









      $endgroup$





      Prove that $f:mathbb{R}to mathbb{R}$ such that
      $$ f(x) = left{
      begin{array}{c l}
      x^2, sinleft(frac{1}{x}right) & ,quad xneq 0\
      0 & ,quad x=0
      end{array} right.$$

      is Lipschitz (without use of derivatives).




      Attempt. I am aware (Lipschitz-continuous $f(x)=x^2cdot sinleft(frac{1}{x}right)$)
      that: $$|f(x)-f(y)|leq 3|x-y| ~~~forall~x,~yin mathbb{R},$$
      but I am looking for a proof, without use of derivatives.
      I tried: for $x,yneq 0$:



      begin{eqnarray}
      x^2sinfrac{1}{x} - y^2 sinfrac{1}{y}
      &=& (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right ),nonumber
      end{eqnarray}

      so: $$left | x^2sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
      leq |x^2 - y^2| + y^2 left | sinfrac{1}{x} - sinfrac{1}{y} right |.$$

      Since:
      $$left | sinfrac{1}{x} - sinfrac{1}{y} right | leq left| frac{1}{x} - frac{1}{y}right |= frac{|x - y|}{xy},$$
      we get:
      $$left | x^2 sinfrac{1}{x} - y^2 sinfrac{1}{y} right |
      leq left(x+y+frac{y}{x}right)|x-y|.$$

      Unfortunatelly , the quantity $x+y+frac{y}{x}$ grows to
      $+infty$, either for large $x$, or for $xapprox 0.$



      Thanks in advance for the help.







      real-analysis analysis lipschitz-functions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 16 '18 at 20:50









      Nikolaos SkoutNikolaos Skout

      2,322618




      2,322618






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Writing
          $$
          f(x) - f(y) = (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )
          $$

          is a good start. The terms on the right-hand side can be estimated better if we assume that $0 < |y| le |x|$:
          $$
          left| (x^2- y^2) sin frac 1x right| le |x-y| |x+y|| frac 1x| le 2|x-y|
          $$

          and
          $$
          left|y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )right| le |y^2|
          left| frac 1x - frac 1y right| = left|frac yxright||x-y| le |x-y|
          $$

          and therefore
          $$
          |f(x)-f(y)|leq 3|x-y| , .
          $$



          For $0 < |x| le |y|$ repeat the same calculation with $x$ and $y$ exchanged, or use the symmetry of $f$.



          Finally, for $x ne 0 = y$
          $$
          |f(x) - f(0)| = left |x^2 sin frac 1x right| le |x| = |x-0| , .
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Great use of inequalities. Thank you!
            $endgroup$
            – Nikolaos Skout
            Dec 16 '18 at 22:38











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043139%2fprove-fx-x2-sin-left-frac1x-right-is-lipschitz-no-use-of-derivativ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Writing
          $$
          f(x) - f(y) = (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )
          $$

          is a good start. The terms on the right-hand side can be estimated better if we assume that $0 < |y| le |x|$:
          $$
          left| (x^2- y^2) sin frac 1x right| le |x-y| |x+y|| frac 1x| le 2|x-y|
          $$

          and
          $$
          left|y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )right| le |y^2|
          left| frac 1x - frac 1y right| = left|frac yxright||x-y| le |x-y|
          $$

          and therefore
          $$
          |f(x)-f(y)|leq 3|x-y| , .
          $$



          For $0 < |x| le |y|$ repeat the same calculation with $x$ and $y$ exchanged, or use the symmetry of $f$.



          Finally, for $x ne 0 = y$
          $$
          |f(x) - f(0)| = left |x^2 sin frac 1x right| le |x| = |x-0| , .
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Great use of inequalities. Thank you!
            $endgroup$
            – Nikolaos Skout
            Dec 16 '18 at 22:38
















          2












          $begingroup$

          Writing
          $$
          f(x) - f(y) = (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )
          $$

          is a good start. The terms on the right-hand side can be estimated better if we assume that $0 < |y| le |x|$:
          $$
          left| (x^2- y^2) sin frac 1x right| le |x-y| |x+y|| frac 1x| le 2|x-y|
          $$

          and
          $$
          left|y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )right| le |y^2|
          left| frac 1x - frac 1y right| = left|frac yxright||x-y| le |x-y|
          $$

          and therefore
          $$
          |f(x)-f(y)|leq 3|x-y| , .
          $$



          For $0 < |x| le |y|$ repeat the same calculation with $x$ and $y$ exchanged, or use the symmetry of $f$.



          Finally, for $x ne 0 = y$
          $$
          |f(x) - f(0)| = left |x^2 sin frac 1x right| le |x| = |x-0| , .
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Great use of inequalities. Thank you!
            $endgroup$
            – Nikolaos Skout
            Dec 16 '18 at 22:38














          2












          2








          2





          $begingroup$

          Writing
          $$
          f(x) - f(y) = (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )
          $$

          is a good start. The terms on the right-hand side can be estimated better if we assume that $0 < |y| le |x|$:
          $$
          left| (x^2- y^2) sin frac 1x right| le |x-y| |x+y|| frac 1x| le 2|x-y|
          $$

          and
          $$
          left|y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )right| le |y^2|
          left| frac 1x - frac 1y right| = left|frac yxright||x-y| le |x-y|
          $$

          and therefore
          $$
          |f(x)-f(y)|leq 3|x-y| , .
          $$



          For $0 < |x| le |y|$ repeat the same calculation with $x$ and $y$ exchanged, or use the symmetry of $f$.



          Finally, for $x ne 0 = y$
          $$
          |f(x) - f(0)| = left |x^2 sin frac 1x right| le |x| = |x-0| , .
          $$






          share|cite|improve this answer











          $endgroup$



          Writing
          $$
          f(x) - f(y) = (x^2-y^2)sinfrac{1}{x} + y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )
          $$

          is a good start. The terms on the right-hand side can be estimated better if we assume that $0 < |y| le |x|$:
          $$
          left| (x^2- y^2) sin frac 1x right| le |x-y| |x+y|| frac 1x| le 2|x-y|
          $$

          and
          $$
          left|y^2left ( sinfrac{1}{x} - sinfrac{1}{y} right )right| le |y^2|
          left| frac 1x - frac 1y right| = left|frac yxright||x-y| le |x-y|
          $$

          and therefore
          $$
          |f(x)-f(y)|leq 3|x-y| , .
          $$



          For $0 < |x| le |y|$ repeat the same calculation with $x$ and $y$ exchanged, or use the symmetry of $f$.



          Finally, for $x ne 0 = y$
          $$
          |f(x) - f(0)| = left |x^2 sin frac 1x right| le |x| = |x-0| , .
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 16 '18 at 21:26

























          answered Dec 16 '18 at 21:15









          Martin RMartin R

          28.9k33458




          28.9k33458












          • $begingroup$
            Great use of inequalities. Thank you!
            $endgroup$
            – Nikolaos Skout
            Dec 16 '18 at 22:38


















          • $begingroup$
            Great use of inequalities. Thank you!
            $endgroup$
            – Nikolaos Skout
            Dec 16 '18 at 22:38
















          $begingroup$
          Great use of inequalities. Thank you!
          $endgroup$
          – Nikolaos Skout
          Dec 16 '18 at 22:38




          $begingroup$
          Great use of inequalities. Thank you!
          $endgroup$
          – Nikolaos Skout
          Dec 16 '18 at 22:38


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043139%2fprove-fx-x2-sin-left-frac1x-right-is-lipschitz-no-use-of-derivativ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen