How to calculate $lim_{n to infty} sum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?












2












$begingroup$


How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?



My try:



begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}



But,

I'm not sure whether this's right because I'm not sure whether the second equality is right.



Any helps and new ideas will be highly appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
    $endgroup$
    – Will M.
    Dec 21 '18 at 5:39
















2












$begingroup$


How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?



My try:



begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}



But,

I'm not sure whether this's right because I'm not sure whether the second equality is right.



Any helps and new ideas will be highly appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
    $endgroup$
    – Will M.
    Dec 21 '18 at 5:39














2












2








2





$begingroup$


How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?



My try:



begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}



But,

I'm not sure whether this's right because I'm not sure whether the second equality is right.



Any helps and new ideas will be highly appreciated!










share|cite|improve this question











$endgroup$




How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?



My try:



begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}



But,

I'm not sure whether this's right because I'm not sure whether the second equality is right.



Any helps and new ideas will be highly appreciated!







real-analysis calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '18 at 9:13









Lorenzo B.

1,8602520




1,8602520










asked Dec 21 '18 at 5:21









ZeroZero

37510




37510












  • $begingroup$
    As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
    $endgroup$
    – Will M.
    Dec 21 '18 at 5:39


















  • $begingroup$
    As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
    $endgroup$
    – Will M.
    Dec 21 '18 at 5:39
















$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39




$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39










2 Answers
2






active

oldest

votes


















2












$begingroup$

$$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
(the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)



But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
$$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    To use integral method rigorously, I came up with a new solution.



    Notice that(due to the monotonicity)
    $$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$



    Then we have
    $$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$



    Considering
    $$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$



    Then we can arrive at
    $$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048202%2fhow-to-calculate-lim-n-to-infty-sum-k-1n-frac1-sqrt-n2n-k2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      $$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
      (the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)



      But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
      $$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        $$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
        (the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)



        But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
        $$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          $$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
          (the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)



          But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
          $$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$






          share|cite|improve this answer











          $endgroup$



          $$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
          (the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)



          But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
          $$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 21 '18 at 10:25









          amWhy

          1




          1










          answered Dec 21 '18 at 9:36









          DarmanDarman

          538112




          538112























              1












              $begingroup$

              To use integral method rigorously, I came up with a new solution.



              Notice that(due to the monotonicity)
              $$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$



              Then we have
              $$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$



              Considering
              $$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$



              Then we can arrive at
              $$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                To use integral method rigorously, I came up with a new solution.



                Notice that(due to the monotonicity)
                $$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$



                Then we have
                $$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$



                Considering
                $$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$



                Then we can arrive at
                $$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  To use integral method rigorously, I came up with a new solution.



                  Notice that(due to the monotonicity)
                  $$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$



                  Then we have
                  $$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$



                  Considering
                  $$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$



                  Then we can arrive at
                  $$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$






                  share|cite|improve this answer









                  $endgroup$



                  To use integral method rigorously, I came up with a new solution.



                  Notice that(due to the monotonicity)
                  $$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$



                  Then we have
                  $$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$



                  Considering
                  $$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$



                  Then we can arrive at
                  $$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 21 '18 at 9:30









                  ZeroZero

                  37510




                  37510






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048202%2fhow-to-calculate-lim-n-to-infty-sum-k-1n-frac1-sqrt-n2n-k2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen