Solve the differential equation $frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$
$begingroup$
Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
My try:
we can write the equation as:
$$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$
Multiplying both sides with $frac{1}{y^5}$ we get:
$$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$
Now letting $$frac{1}{y^4}=t$$ we get
$$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$
Any way further to convert in to variable separable?
algebra-precalculus ordinary-differential-equations homogeneous-equation
$endgroup$
add a comment |
$begingroup$
Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
My try:
we can write the equation as:
$$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$
Multiplying both sides with $frac{1}{y^5}$ we get:
$$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$
Now letting $$frac{1}{y^4}=t$$ we get
$$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$
Any way further to convert in to variable separable?
algebra-precalculus ordinary-differential-equations homogeneous-equation
$endgroup$
add a comment |
$begingroup$
Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
My try:
we can write the equation as:
$$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$
Multiplying both sides with $frac{1}{y^5}$ we get:
$$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$
Now letting $$frac{1}{y^4}=t$$ we get
$$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$
Any way further to convert in to variable separable?
algebra-precalculus ordinary-differential-equations homogeneous-equation
$endgroup$
Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
My try:
we can write the equation as:
$$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$
Multiplying both sides with $frac{1}{y^5}$ we get:
$$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$
Now letting $$frac{1}{y^4}=t$$ we get
$$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$
Any way further to convert in to variable separable?
algebra-precalculus ordinary-differential-equations homogeneous-equation
algebra-precalculus ordinary-differential-equations homogeneous-equation
asked Dec 21 '18 at 5:30
Umesh shankarUmesh shankar
2,81631220
2,81631220
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form
$$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$
Then, look for a function $mu(y)$ such that
$$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$
Let $mu(y) = y^{-5}$. Then, the equation becomes
$$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
text dleft[ -xy^{-4} - 2x + log y right] = 0$$
Integrating, we get
$$ -xy^{-4} - 2x + log y = C $$
Solving for $x$ gives us
$$ x = frac{y^4}{2y^4+1}log(cy) $$
Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,
$$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$
$endgroup$
add a comment |
$begingroup$
$$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
$$(y+2y^5)frac{dx}{dy}-4x=y^4$$
Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
$$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
$y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
$$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
$C$ is an arbitrary constant, to be determined according to some boundary condition.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048209%2fsolve-the-differential-equation-fracdydx-fracy2y54xy4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form
$$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$
Then, look for a function $mu(y)$ such that
$$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$
Let $mu(y) = y^{-5}$. Then, the equation becomes
$$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
text dleft[ -xy^{-4} - 2x + log y right] = 0$$
Integrating, we get
$$ -xy^{-4} - 2x + log y = C $$
Solving for $x$ gives us
$$ x = frac{y^4}{2y^4+1}log(cy) $$
Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,
$$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$
$endgroup$
add a comment |
$begingroup$
This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form
$$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$
Then, look for a function $mu(y)$ such that
$$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$
Let $mu(y) = y^{-5}$. Then, the equation becomes
$$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
text dleft[ -xy^{-4} - 2x + log y right] = 0$$
Integrating, we get
$$ -xy^{-4} - 2x + log y = C $$
Solving for $x$ gives us
$$ x = frac{y^4}{2y^4+1}log(cy) $$
Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,
$$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$
$endgroup$
add a comment |
$begingroup$
This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form
$$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$
Then, look for a function $mu(y)$ such that
$$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$
Let $mu(y) = y^{-5}$. Then, the equation becomes
$$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
text dleft[ -xy^{-4} - 2x + log y right] = 0$$
Integrating, we get
$$ -xy^{-4} - 2x + log y = C $$
Solving for $x$ gives us
$$ x = frac{y^4}{2y^4+1}log(cy) $$
Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,
$$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$
$endgroup$
This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form
$$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$
Then, look for a function $mu(y)$ such that
$$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$
Let $mu(y) = y^{-5}$. Then, the equation becomes
$$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
text dleft[ -xy^{-4} - 2x + log y right] = 0$$
Integrating, we get
$$ -xy^{-4} - 2x + log y = C $$
Solving for $x$ gives us
$$ x = frac{y^4}{2y^4+1}log(cy) $$
Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,
$$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$
edited Dec 21 '18 at 8:09
answered Dec 21 '18 at 7:43
AlexanderJ93AlexanderJ93
6,173823
6,173823
add a comment |
add a comment |
$begingroup$
$$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
$$(y+2y^5)frac{dx}{dy}-4x=y^4$$
Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
$$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
$y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
$$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
$C$ is an arbitrary constant, to be determined according to some boundary condition.
$endgroup$
add a comment |
$begingroup$
$$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
$$(y+2y^5)frac{dx}{dy}-4x=y^4$$
Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
$$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
$y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
$$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
$C$ is an arbitrary constant, to be determined according to some boundary condition.
$endgroup$
add a comment |
$begingroup$
$$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
$$(y+2y^5)frac{dx}{dy}-4x=y^4$$
Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
$$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
$y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
$$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
$C$ is an arbitrary constant, to be determined according to some boundary condition.
$endgroup$
$$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$
$$(y+2y^5)frac{dx}{dy}-4x=y^4$$
Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
$$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
$y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
$$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
$C$ is an arbitrary constant, to be determined according to some boundary condition.
edited Dec 21 '18 at 7:52
answered Dec 21 '18 at 7:46
JJacquelinJJacquelin
44.2k21854
44.2k21854
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048209%2fsolve-the-differential-equation-fracdydx-fracy2y54xy4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown