Solve the differential equation $frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$












6












$begingroup$


Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



My try:



we can write the equation as:



$$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$



Multiplying both sides with $frac{1}{y^5}$ we get:



$$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$



Now letting $$frac{1}{y^4}=t$$ we get



$$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$



Any way further to convert in to variable separable?










share|cite|improve this question









$endgroup$

















    6












    $begingroup$


    Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



    My try:



    we can write the equation as:



    $$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$



    Multiplying both sides with $frac{1}{y^5}$ we get:



    $$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$



    Now letting $$frac{1}{y^4}=t$$ we get



    $$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$



    Any way further to convert in to variable separable?










    share|cite|improve this question









    $endgroup$















      6












      6








      6





      $begingroup$


      Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



      My try:



      we can write the equation as:



      $$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$



      Multiplying both sides with $frac{1}{y^5}$ we get:



      $$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$



      Now letting $$frac{1}{y^4}=t$$ we get



      $$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$



      Any way further to convert in to variable separable?










      share|cite|improve this question









      $endgroup$




      Solve the differential equation $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



      My try:



      we can write the equation as:



      $$frac{dy}{dx}=frac{1}{y^3}frac{left(1+2y^4right)}{1+frac{4x}{y^4}}$$



      Multiplying both sides with $frac{1}{y^5}$ we get:



      $$frac{1}{y^5}frac{dy}{dx}=frac{1}{y^8}frac{y^4(2+frac{1}{y^4})}{1+frac{4x}{y^4}}=frac{1}{y^4}frac{(2+frac{1}{y^4})}{1+frac{4x}{y^4}}$$



      Now letting $$frac{1}{y^4}=t$$ we get



      $$frac{-1}{4}frac{dt}{dx}=frac{t^2+2t}{4tx+1}$$



      Any way further to convert in to variable separable?







      algebra-precalculus ordinary-differential-equations homogeneous-equation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 21 '18 at 5:30









      Umesh shankarUmesh shankar

      2,81631220




      2,81631220






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form



          $$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$



          Then, look for a function $mu(y)$ such that



          $$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$



          Let $mu(y) = y^{-5}$. Then, the equation becomes



          $$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
          text dleft[ -xy^{-4} - 2x + log y right] = 0$$



          Integrating, we get



          $$ -xy^{-4} - 2x + log y = C $$



          Solving for $x$ gives us



          $$ x = frac{y^4}{2y^4+1}log(cy) $$



          Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,



          $$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



            $$(y+2y^5)frac{dx}{dy}-4x=y^4$$
            Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
            $$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
            $y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
            $$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
            $C$ is an arbitrary constant, to be determined according to some boundary condition.






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048209%2fsolve-the-differential-equation-fracdydx-fracy2y54xy4%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form



              $$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$



              Then, look for a function $mu(y)$ such that



              $$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$



              Let $mu(y) = y^{-5}$. Then, the equation becomes



              $$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
              text dleft[ -xy^{-4} - 2x + log y right] = 0$$



              Integrating, we get



              $$ -xy^{-4} - 2x + log y = C $$



              Solving for $x$ gives us



              $$ x = frac{y^4}{2y^4+1}log(cy) $$



              Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,



              $$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form



                $$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$



                Then, look for a function $mu(y)$ such that



                $$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$



                Let $mu(y) = y^{-5}$. Then, the equation becomes



                $$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
                text dleft[ -xy^{-4} - 2x + log y right] = 0$$



                Integrating, we get



                $$ -xy^{-4} - 2x + log y = C $$



                Solving for $x$ gives us



                $$ x = frac{y^4}{2y^4+1}log(cy) $$



                Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,



                $$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form



                  $$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$



                  Then, look for a function $mu(y)$ such that



                  $$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$



                  Let $mu(y) = y^{-5}$. Then, the equation becomes



                  $$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
                  text dleft[ -xy^{-4} - 2x + log y right] = 0$$



                  Integrating, we get



                  $$ -xy^{-4} - 2x + log y = C $$



                  Solving for $x$ gives us



                  $$ x = frac{y^4}{2y^4+1}log(cy) $$



                  Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,



                  $$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$






                  share|cite|improve this answer











                  $endgroup$



                  This is an "almost" exact equation. Write it in $A(x,y)text dx + B(x,y)text dy=0$ form



                  $$(-y-2y^5)text dx + (4x+y^4)text dy = 0$$



                  Then, look for a function $mu(y)$ such that



                  $$ (-y-2y^5)mu(y)text dx + (4x+y^4)mu(y)text dy = 0 $$



                  Let $mu(y) = y^{-5}$. Then, the equation becomes



                  $$ (-y^{-4}-2)text dx + (4xy^{-5}+y^{-1})text dy = 0 \
                  text dleft[ -xy^{-4} - 2x + log y right] = 0$$



                  Integrating, we get



                  $$ -xy^{-4} - 2x + log y = C $$



                  Solving for $x$ gives us



                  $$ x = frac{y^4}{2y^4+1}log(cy) $$



                  Solving for $y$ in terms of the function $W(z)$ such that $W(z)exp(W(z)) = W(zexp(z)) = z$,



                  $$y = left( frac{4x}{W(kxexp(-8x))} right)^frac{1}{4}$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 21 '18 at 8:09

























                  answered Dec 21 '18 at 7:43









                  AlexanderJ93AlexanderJ93

                  6,173823




                  6,173823























                      1












                      $begingroup$

                      $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



                      $$(y+2y^5)frac{dx}{dy}-4x=y^4$$
                      Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
                      $$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
                      $y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
                      $$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
                      $C$ is an arbitrary constant, to be determined according to some boundary condition.






                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



                        $$(y+2y^5)frac{dx}{dy}-4x=y^4$$
                        Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
                        $$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
                        $y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
                        $$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
                        $C$ is an arbitrary constant, to be determined according to some boundary condition.






                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



                          $$(y+2y^5)frac{dx}{dy}-4x=y^4$$
                          Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
                          $$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
                          $y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
                          $$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
                          $C$ is an arbitrary constant, to be determined according to some boundary condition.






                          share|cite|improve this answer











                          $endgroup$



                          $$frac{dy}{dx}=frac{y+2y^5}{4x+y^4}$$



                          $$(y+2y^5)frac{dx}{dy}-4x=y^4$$
                          Considering the function $x(y)$ this is a first order linear ODE. Solving such kind of ODE is classic. The result is :
                          $$x(y)=frac{y^4}{2y^4+1}ln(c:y)$$
                          $y(x)$ is the inverse function. It cannot be expressed with a finite number of elementary functions. A closed form requires a special function W(X) the Lambert W function.
                          $$y(x)=left(frac{4x}{text{W}(C:xe^{-8x})}right)^{1/4}$$
                          $C$ is an arbitrary constant, to be determined according to some boundary condition.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 21 '18 at 7:52

























                          answered Dec 21 '18 at 7:46









                          JJacquelinJJacquelin

                          44.2k21854




                          44.2k21854






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048209%2fsolve-the-differential-equation-fracdydx-fracy2y54xy4%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen