Can I hatch this region in any way?












11












$begingroup$


Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here










share|improve this question











$endgroup$












  • $begingroup$
    For what purpose?
    $endgroup$
    – Alex Trounev
    Jan 3 at 19:10
















11












$begingroup$


Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here










share|improve this question











$endgroup$












  • $begingroup$
    For what purpose?
    $endgroup$
    – Alex Trounev
    Jan 3 at 19:10














11












11








11


2



$begingroup$


Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here










share|improve this question











$endgroup$




Can I hatch this region in any way?



Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]


enter image description here



EDIT



I want to define a region of a circle, because I want to determine the area of this region...



enter image description here







graphics






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 3 at 19:16







LCarvalho

















asked Jan 3 at 19:06









LCarvalhoLCarvalho

5,86142986




5,86142986












  • $begingroup$
    For what purpose?
    $endgroup$
    – Alex Trounev
    Jan 3 at 19:10


















  • $begingroup$
    For what purpose?
    $endgroup$
    – Alex Trounev
    Jan 3 at 19:10
















$begingroup$
For what purpose?
$endgroup$
– Alex Trounev
Jan 3 at 19:10




$begingroup$
For what purpose?
$endgroup$
– Alex Trounev
Jan 3 at 19:10










3 Answers
3






active

oldest

votes


















16












$begingroup$

reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
N[Area[reg]]



52.3599




Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
BoundaryStyle -> Red]]


enter image description here



RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
Frame -> False]



same picture







share|improve this answer











$endgroup$





















    5












    $begingroup$

    poly = MeshPrimitives[
    BoundaryDiscretizeRegion[
    RegionIntersection[
    Disk,
    HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
    HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
    ],
    MaxCellMeasure -> {1 -> 0.001}
    ],
    2
    ][[1]];
    Area[poly]



    0.523599




    Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


    enter image description here






    share|improve this answer









    $endgroup$





















      4












      $begingroup$

         Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
      Circle[{0, 0}, 10, {π/6, π/3}],
      Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
      Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
      10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


      enter image description here



      Therefore we can use the following.



      reg1 = Disk[{0, 0}, 10];
      reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
      reg=RegionIntersection[reg1, reg2];
      Area@reg



      $frac{50 pi }{3}$




      Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
      Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


      enter image description here



      You can also choose reg2 as



      reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


      Or



      reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





      share|improve this answer











      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "387"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188788%2fcan-i-hatch-this-region-in-any-way%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        16












        $begingroup$

        reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
        N[Area[reg]]



        52.3599




        Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
        RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
        Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
        BoundaryStyle -> Red]]


        enter image description here



        RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
        MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
        MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
        PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
        Frame -> False]



        same picture







        share|improve this answer











        $endgroup$


















          16












          $begingroup$

          reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
          N[Area[reg]]



          52.3599




          Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
          RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
          Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
          BoundaryStyle -> Red]]


          enter image description here



          RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
          MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
          MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
          PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
          Frame -> False]



          same picture







          share|improve this answer











          $endgroup$
















            16












            16








            16





            $begingroup$

            reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
            N[Area[reg]]



            52.3599




            Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
            RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
            Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
            BoundaryStyle -> Red]]


            enter image description here



            RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
            MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
            MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
            PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
            Frame -> False]



            same picture







            share|improve this answer











            $endgroup$



            reg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
            N[Area[reg]]



            52.3599




            Show[Graphics[{Gray, Circle[{0, 0}, 10]}, Axes -> True], 
            RegionPlot[reg, MeshFunctions -> {# + #2 &, # - #2 &},
            Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None,
            BoundaryStyle -> Red]]


            enter image description here



            RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3],{x, -10, 10}, {y, -10, 10}, 
            MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
            MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
            PlotPoints -> 90, Axes -> True, Epilog -> {Gray, Scale[Circle, 10]},
            Frame -> False]



            same picture








            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Jan 4 at 0:10

























            answered Jan 3 at 19:57









            kglrkglr

            190k10206425




            190k10206425























                5












                $begingroup$

                poly = MeshPrimitives[
                BoundaryDiscretizeRegion[
                RegionIntersection[
                Disk,
                HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                ],
                MaxCellMeasure -> {1 -> 0.001}
                ],
                2
                ][[1]];
                Area[poly]



                0.523599




                Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                enter image description here






                share|improve this answer









                $endgroup$


















                  5












                  $begingroup$

                  poly = MeshPrimitives[
                  BoundaryDiscretizeRegion[
                  RegionIntersection[
                  Disk,
                  HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                  HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                  ],
                  MaxCellMeasure -> {1 -> 0.001}
                  ],
                  2
                  ][[1]];
                  Area[poly]



                  0.523599




                  Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                  enter image description here






                  share|improve this answer









                  $endgroup$
















                    5












                    5








                    5





                    $begingroup$

                    poly = MeshPrimitives[
                    BoundaryDiscretizeRegion[
                    RegionIntersection[
                    Disk,
                    HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                    HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                    ],
                    MaxCellMeasure -> {1 -> 0.001}
                    ],
                    2
                    ][[1]];
                    Area[poly]



                    0.523599




                    Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                    enter image description here






                    share|improve this answer









                    $endgroup$



                    poly = MeshPrimitives[
                    BoundaryDiscretizeRegion[
                    RegionIntersection[
                    Disk,
                    HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
                    HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
                    ],
                    MaxCellMeasure -> {1 -> 0.001}
                    ],
                    2
                    ][[1]];
                    Area[poly]



                    0.523599




                    Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]


                    enter image description here







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Jan 3 at 19:30









                    Henrik SchumacherHenrik Schumacher

                    59.1k582164




                    59.1k582164























                        4












                        $begingroup$

                           Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                        Circle[{0, 0}, 10, {π/6, π/3}],
                        Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                        Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                        10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                        enter image description here



                        Therefore we can use the following.



                        reg1 = Disk[{0, 0}, 10];
                        reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                        reg=RegionIntersection[reg1, reg2];
                        Area@reg



                        $frac{50 pi }{3}$




                        Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                        Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                        enter image description here



                        You can also choose reg2 as



                        reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                        Or



                        reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





                        share|improve this answer











                        $endgroup$


















                          4












                          $begingroup$

                             Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                          Circle[{0, 0}, 10, {π/6, π/3}],
                          Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                          Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                          10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                          enter image description here



                          Therefore we can use the following.



                          reg1 = Disk[{0, 0}, 10];
                          reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                          reg=RegionIntersection[reg1, reg2];
                          Area@reg



                          $frac{50 pi }{3}$




                          Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                          Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                          enter image description here



                          You can also choose reg2 as



                          reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                          Or



                          reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





                          share|improve this answer











                          $endgroup$
















                            4












                            4








                            4





                            $begingroup$

                               Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                            Circle[{0, 0}, 10, {π/6, π/3}],
                            Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                            Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                            10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                            enter image description here



                            Therefore we can use the following.



                            reg1 = Disk[{0, 0}, 10];
                            reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                            reg=RegionIntersection[reg1, reg2];
                            Area@reg



                            $frac{50 pi }{3}$




                            Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                            Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                            enter image description here



                            You can also choose reg2 as



                            reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                            Or



                            reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];





                            share|improve this answer











                            $endgroup$



                               Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick, 
                            Circle[{0, 0}, 10, {π/6, π/3}],
                            Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
                            Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
                            10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]


                            enter image description here



                            Therefore we can use the following.



                            reg1 = Disk[{0, 0}, 10];
                            reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
                            reg=RegionIntersection[reg1, reg2];
                            Area@reg



                            $frac{50 pi }{3}$




                            Show[Graphics[{Circle[{0, 0}, 10]}, Axes -> True], 
                            Region[reg, BaseStyle -> {LightBlue, EdgeForm[{Red, Thick}]}]]


                            enter image description here



                            You can also choose reg2 as



                            reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];


                            Or



                            reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];






                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited Jan 4 at 4:42

























                            answered Jan 3 at 20:29









                            Okkes DulgerciOkkes Dulgerci

                            5,4241919




                            5,4241919






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematica Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188788%2fcan-i-hatch-this-region-in-any-way%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Wiesbaden

                                Marschland

                                Dieringhausen