Binomial Theorem Proof by Induction
$begingroup$
Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.
Binomial Theorem
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Base Case: $n=0$
$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$
Induction Hypothesis
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Induction Step
$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$
induction binomial-theorem
$endgroup$
add a comment |
$begingroup$
Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.
Binomial Theorem
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Base Case: $n=0$
$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$
Induction Hypothesis
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Induction Step
$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$
induction binomial-theorem
$endgroup$
1
$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16
2
$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22
add a comment |
$begingroup$
Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.
Binomial Theorem
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Base Case: $n=0$
$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$
Induction Hypothesis
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Induction Step
$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$
induction binomial-theorem
$endgroup$
Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.
Binomial Theorem
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Base Case: $n=0$
$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$
Induction Hypothesis
$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$
Induction Step
$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$
induction binomial-theorem
induction binomial-theorem
edited Dec 23 '18 at 10:11
Sik Feng Cheong
1579
1579
asked Mar 13 '16 at 5:56
EdtheBigEdtheBig
46114
46114
1
$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16
2
$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22
add a comment |
1
$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16
2
$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22
1
1
$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16
$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16
2
2
$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22
$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1695270%2fbinomial-theorem-proof-by-induction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1695270%2fbinomial-theorem-proof-by-induction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16
2
$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22