Laplace transform of $frac{sin^2(t)}{t}$












1












$begingroup$


Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$



and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$



then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$



What should I do next...?



the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 23 '18 at 7:45
















1












$begingroup$


Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$



and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$



then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$



What should I do next...?



the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 23 '18 at 7:45














1












1








1





$begingroup$


Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$



and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$



then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$



What should I do next...?



the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$










share|cite|improve this question











$endgroup$




Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$



and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$



then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$



What should I do next...?



the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$







laplace-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 8:50









DavidG

2,4561726




2,4561726










asked Dec 23 '18 at 7:43









FOMTFOMT

133




133








  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 23 '18 at 7:45














  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 23 '18 at 7:45








2




2




$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45




$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45










1 Answer
1






active

oldest

votes


















1












$begingroup$

Using the double angle identity:



begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}



Thus,



begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}



We now employ the property of Laplace Transforms:



begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}



Thus,



begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
    $endgroup$
    – DavidG
    Dec 23 '18 at 10:17











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050145%2flaplace-transform-of-frac-sin2tt%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Using the double angle identity:



begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}



Thus,



begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}



We now employ the property of Laplace Transforms:



begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}



Thus,



begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
    $endgroup$
    – DavidG
    Dec 23 '18 at 10:17
















1












$begingroup$

Using the double angle identity:



begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}



Thus,



begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}



We now employ the property of Laplace Transforms:



begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}



Thus,



begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
    $endgroup$
    – DavidG
    Dec 23 '18 at 10:17














1












1








1





$begingroup$

Using the double angle identity:



begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}



Thus,



begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}



We now employ the property of Laplace Transforms:



begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}



Thus,



begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}






share|cite|improve this answer









$endgroup$



Using the double angle identity:



begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}



Thus,



begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}



We now employ the property of Laplace Transforms:



begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}



Thus,



begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 23 '18 at 8:07









DavidGDavidG

2,4561726




2,4561726












  • $begingroup$
    If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
    $endgroup$
    – DavidG
    Dec 23 '18 at 10:17


















  • $begingroup$
    If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
    $endgroup$
    – DavidG
    Dec 23 '18 at 10:17
















$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17




$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050145%2flaplace-transform-of-frac-sin2tt%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen