Binomial Theorem Proof by Induction












5












$begingroup$


Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.



Binomial Theorem



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Base Case: $n=0$



$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$



Induction Hypothesis



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Induction Step



$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
    $endgroup$
    – T. Bongers
    Mar 13 '16 at 6:16






  • 2




    $begingroup$
    Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
    $endgroup$
    – André Nicolas
    Mar 13 '16 at 6:22


















5












$begingroup$


Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.



Binomial Theorem



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Base Case: $n=0$



$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$



Induction Hypothesis



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Induction Step



$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
    $endgroup$
    – T. Bongers
    Mar 13 '16 at 6:16






  • 2




    $begingroup$
    Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
    $endgroup$
    – André Nicolas
    Mar 13 '16 at 6:22
















5












5








5





$begingroup$


Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.



Binomial Theorem



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Base Case: $n=0$



$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$



Induction Hypothesis



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Induction Step



$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$










share|cite|improve this question











$endgroup$




Did i prove the Binomial Theorem correctly? I got a feeling I did, but need another set of eyes to look over my work. Not really much of a question, sorry.



Binomial Theorem



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Base Case: $n=0$



$$(x+y)^{0}=1={{0}choose{0}}x^{0-0}y^{0}=sum_{k=0}^{0}{{0}choose{k}}x^{0-k}y^{k}$$



Induction Hypothesis



$$(x+y)^{n}=sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}$$



Induction Step



$$begin{align*}
(x+y)^{n+1} &= (x+y)(x+y)^{n} \
&= xsum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k}+ysum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k} \
&= sum_{k=0}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {nchoose{0}}x^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+{nchoose{n}}y^{n+1}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= x^{n+1}+y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=0}^{n-1}{{n}choose{k}}x^{n-k}y^{k+1} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n}choose{k}}x^{n+1-k}y^{k}+sum_{k=1}^{n}{{n}choose{k-1}}x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}left({{n}choose{k}}+{{n}choose{k-1}}right)x^{n+1-k}y^{k} \
&= {{n+1}choose{0}}x^{n+1}+{{n+1}choose{n+1}}y^{n+1}+sum_{k=1}^{n}{{n+1}choose{k}}x^{n+1-k}y^{k} \
&= sum_{k=0}^{n+1}{{n+1}choose{k}}x^{n+1-k}y^{k}end{align*}$$







induction binomial-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 10:11









Sik Feng Cheong

1579




1579










asked Mar 13 '16 at 5:56









EdtheBigEdtheBig

46114




46114








  • 1




    $begingroup$
    Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
    $endgroup$
    – T. Bongers
    Mar 13 '16 at 6:16






  • 2




    $begingroup$
    Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
    $endgroup$
    – André Nicolas
    Mar 13 '16 at 6:22
















  • 1




    $begingroup$
    Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
    $endgroup$
    – T. Bongers
    Mar 13 '16 at 6:16






  • 2




    $begingroup$
    Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
    $endgroup$
    – André Nicolas
    Mar 13 '16 at 6:22










1




1




$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16




$begingroup$
Please write your work in mathjax here, rather than including only a picture. There are also several proofs of this here on MSE, on Wikipedia, and in many discrete math textbooks.
$endgroup$
– T. Bongers
Mar 13 '16 at 6:16




2




2




$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22






$begingroup$
Hard on the eyes to proofread handwritten text. But everything looks right, the key is reindexing so you can use the Pascal Identity, which you did without an explicit reference, $binom{n}{k}+binom{n}{k-1}=binom{n+1}{k}$.
$endgroup$
– André Nicolas
Mar 13 '16 at 6:22












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1695270%2fbinomial-theorem-proof-by-induction%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1695270%2fbinomial-theorem-proof-by-induction%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

To store a contact into the json file from server.js file using a class in NodeJS

Redirect URL with Chrome Remote Debugging Android Devices

Dieringhausen