Integral inequality with partial derivative

Multi tool use
Multi tool use












0












$begingroup$



Fix $eta in Bbb R^n$, then for any $phi in C_c^infty(Bbb R^n)$, i.e. compactly supported smooth function,
$$ int_{Bbb R^n} frac{partial}{partial x_j} (phi(x) (x eta)) , dx le int_{Bbb R^n} |eta| Big| frac{partial}{partial x_j} (phi(x)x) Big| , dx $$
Here $x eta $ denotes dot product.




Any hints/ advice?





EDIT: I think this is correct.



Consider the bounded operator, $L_eta:Bbb R^n rightarrow Bbb R^n$, $x mapsto langle x, eta rangle $. Its norm is given by $||eta||_2$ by Hilbert space duality.By continuity, we have
$$| frac{partial}{partial x_j} L_eta (phi(x)x) | = | L_eta(frac{partial}{partial x_j} phi(x)x ) | le ||L_eta|| , || frac{partial}{partial x_j} phi(x)x ||_2 = ||eta||_2 || frac{partial}{partial x_j} phi(x)x ||_2 $$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$



    Fix $eta in Bbb R^n$, then for any $phi in C_c^infty(Bbb R^n)$, i.e. compactly supported smooth function,
    $$ int_{Bbb R^n} frac{partial}{partial x_j} (phi(x) (x eta)) , dx le int_{Bbb R^n} |eta| Big| frac{partial}{partial x_j} (phi(x)x) Big| , dx $$
    Here $x eta $ denotes dot product.




    Any hints/ advice?





    EDIT: I think this is correct.



    Consider the bounded operator, $L_eta:Bbb R^n rightarrow Bbb R^n$, $x mapsto langle x, eta rangle $. Its norm is given by $||eta||_2$ by Hilbert space duality.By continuity, we have
    $$| frac{partial}{partial x_j} L_eta (phi(x)x) | = | L_eta(frac{partial}{partial x_j} phi(x)x ) | le ||L_eta|| , || frac{partial}{partial x_j} phi(x)x ||_2 = ||eta||_2 || frac{partial}{partial x_j} phi(x)x ||_2 $$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$



      Fix $eta in Bbb R^n$, then for any $phi in C_c^infty(Bbb R^n)$, i.e. compactly supported smooth function,
      $$ int_{Bbb R^n} frac{partial}{partial x_j} (phi(x) (x eta)) , dx le int_{Bbb R^n} |eta| Big| frac{partial}{partial x_j} (phi(x)x) Big| , dx $$
      Here $x eta $ denotes dot product.




      Any hints/ advice?





      EDIT: I think this is correct.



      Consider the bounded operator, $L_eta:Bbb R^n rightarrow Bbb R^n$, $x mapsto langle x, eta rangle $. Its norm is given by $||eta||_2$ by Hilbert space duality.By continuity, we have
      $$| frac{partial}{partial x_j} L_eta (phi(x)x) | = | L_eta(frac{partial}{partial x_j} phi(x)x ) | le ||L_eta|| , || frac{partial}{partial x_j} phi(x)x ||_2 = ||eta||_2 || frac{partial}{partial x_j} phi(x)x ||_2 $$










      share|cite|improve this question











      $endgroup$





      Fix $eta in Bbb R^n$, then for any $phi in C_c^infty(Bbb R^n)$, i.e. compactly supported smooth function,
      $$ int_{Bbb R^n} frac{partial}{partial x_j} (phi(x) (x eta)) , dx le int_{Bbb R^n} |eta| Big| frac{partial}{partial x_j} (phi(x)x) Big| , dx $$
      Here $x eta $ denotes dot product.




      Any hints/ advice?





      EDIT: I think this is correct.



      Consider the bounded operator, $L_eta:Bbb R^n rightarrow Bbb R^n$, $x mapsto langle x, eta rangle $. Its norm is given by $||eta||_2$ by Hilbert space duality.By continuity, we have
      $$| frac{partial}{partial x_j} L_eta (phi(x)x) | = | L_eta(frac{partial}{partial x_j} phi(x)x ) | le ||L_eta|| , || frac{partial}{partial x_j} phi(x)x ||_2 = ||eta||_2 || frac{partial}{partial x_j} phi(x)x ||_2 $$







      real-analysis inequality integral-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 23 '18 at 8:34







      CL.

















      asked Dec 23 '18 at 8:24









      CL.CL.

      2,2882925




      2,2882925






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050164%2fintegral-inequality-with-partial-derivative%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050164%2fintegral-inequality-with-partial-derivative%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          cGo7 lV6r
          eqclbbW68tE7dB fxEm3V yqmR3RwMlY,ek2KLPmCYu,qjtI,M

          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen