Pandas json_load misses decimals












1














I am struggling to display all the decimals coming from a json feed when I use pandas to convert the data. The code is the following.



import pandas as pd

url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
df = pd.read_json(url, orient='columns', precise_float=True)

df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

print df.head(10000)


The output is:



             Open_time      Open      High       Low     Close   Volume              Close_time  Quote_AV  TradesNo  Taker_base  Taker_quote  Ignore
0 2018-11-21 02:53:00 0.000001 0.000001 0.000001 0.000001 64166 2018-11-21 02:53:59.999 0.077268 6 44229 0.053344 0
1 2018-11-21 02:54:00 0.000001 0.000001 0.000001 0.000001 5030 2018-11-21 02:54:59.999 0.005996 2 1010 0.001212 0
2 2018-11-21 02:55:00 0.000001 0.000001 0.000001 0.000001 61463 2018-11-21 02:55:59.999 0.073756 2 61463 0.073756 0
3 2018-11-21 02:56:00 0.000001 0.000001 0.000001 0.000001 106492 2018-11-21 02:56:59.999 0.127790 2 106492 0.127790 0
4 2018-11-21 02:57:00 0.000001 0.000001 0.000001 0.000001 13215 2018-11-21 02:57:59.999 0.015858 1 13215 0.015858 0
5 2018-11-21 02:58:00 0.000001 0.000001 0.000001 0.000001 25991 2018-11-21 02:58:59.999 0.031181 2 25142 0.030170 0
6 2018-11-21 02:59:00 0.000001 0.000001 0.000001 0.000001 2024424 2018-11-21 02:59:59.999 2.429309 14 1157504 1.389005 0
7 2018-11-21 03:00:00 0.000001 0.000001 0.000001 0.000001 6500 2018-11-21 03:00:59.999 0.007865 1 6500 0.007865 0
8 2018-11-21 03:01:00 0.000001 0.000001 0.000001 0.000001 24128 2018-11-21 03:01:59.999 0.028954 2 0 0.000000 0
9 2018-11-21 03:02:00 0.000001 0.000001 0.000001 0.000001 1126289 2018-11-21 03:02:59.999 1.351547 2 0 0.000000 0
10 2018-11-21 03:03:00 0.000001 0.000001 0.000001 0.000001 91099 2018-11-21 03:03:59.999 0.109695 6 37571 0.045461 0
11 2018-11-21 03:04:00 0.000001 0.000001 0.000001 0.000001 71152 2018-11-21 03:04:59.999 0.086094 1 71152 0.086094 0
12 2018-11-21 03:05:00 0.000001 0.000001 0.000001 0.000001 12222 2018-11-21 03:05:59.999 0.014789 2 12222 0.014789 0


While the json feed has values with more decimals just like:



0 1542768840000
1 "0.00000119"
2 "0.00000120"
3 "0.00000119"
4 "0.00000120"

5 "5030.00000000"
6 1542768899999
7 "0.00599580"
8 2
9 "1010.00000000"
10 "0.00121200"
11 "0"



I tried using the precise_float option but it doesn't seem to do what it is supposed to. Any help would be highly appreciated.










share|improve this question






















  • Can you try setting pd.set_option('precision', 10)
    – Srce Cde
    Nov 21 '18 at 11:23










  • set_option() will help you to set precision level in the pandas. @Chirag is right. try to put precision level according to your need. you can read this paper here pandas.pydata.org/pandas-docs/stable/options.html
    – Imran Ahmad Ghazali
    Nov 21 '18 at 11:28


















1














I am struggling to display all the decimals coming from a json feed when I use pandas to convert the data. The code is the following.



import pandas as pd

url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
df = pd.read_json(url, orient='columns', precise_float=True)

df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

print df.head(10000)


The output is:



             Open_time      Open      High       Low     Close   Volume              Close_time  Quote_AV  TradesNo  Taker_base  Taker_quote  Ignore
0 2018-11-21 02:53:00 0.000001 0.000001 0.000001 0.000001 64166 2018-11-21 02:53:59.999 0.077268 6 44229 0.053344 0
1 2018-11-21 02:54:00 0.000001 0.000001 0.000001 0.000001 5030 2018-11-21 02:54:59.999 0.005996 2 1010 0.001212 0
2 2018-11-21 02:55:00 0.000001 0.000001 0.000001 0.000001 61463 2018-11-21 02:55:59.999 0.073756 2 61463 0.073756 0
3 2018-11-21 02:56:00 0.000001 0.000001 0.000001 0.000001 106492 2018-11-21 02:56:59.999 0.127790 2 106492 0.127790 0
4 2018-11-21 02:57:00 0.000001 0.000001 0.000001 0.000001 13215 2018-11-21 02:57:59.999 0.015858 1 13215 0.015858 0
5 2018-11-21 02:58:00 0.000001 0.000001 0.000001 0.000001 25991 2018-11-21 02:58:59.999 0.031181 2 25142 0.030170 0
6 2018-11-21 02:59:00 0.000001 0.000001 0.000001 0.000001 2024424 2018-11-21 02:59:59.999 2.429309 14 1157504 1.389005 0
7 2018-11-21 03:00:00 0.000001 0.000001 0.000001 0.000001 6500 2018-11-21 03:00:59.999 0.007865 1 6500 0.007865 0
8 2018-11-21 03:01:00 0.000001 0.000001 0.000001 0.000001 24128 2018-11-21 03:01:59.999 0.028954 2 0 0.000000 0
9 2018-11-21 03:02:00 0.000001 0.000001 0.000001 0.000001 1126289 2018-11-21 03:02:59.999 1.351547 2 0 0.000000 0
10 2018-11-21 03:03:00 0.000001 0.000001 0.000001 0.000001 91099 2018-11-21 03:03:59.999 0.109695 6 37571 0.045461 0
11 2018-11-21 03:04:00 0.000001 0.000001 0.000001 0.000001 71152 2018-11-21 03:04:59.999 0.086094 1 71152 0.086094 0
12 2018-11-21 03:05:00 0.000001 0.000001 0.000001 0.000001 12222 2018-11-21 03:05:59.999 0.014789 2 12222 0.014789 0


While the json feed has values with more decimals just like:



0 1542768840000
1 "0.00000119"
2 "0.00000120"
3 "0.00000119"
4 "0.00000120"

5 "5030.00000000"
6 1542768899999
7 "0.00599580"
8 2
9 "1010.00000000"
10 "0.00121200"
11 "0"



I tried using the precise_float option but it doesn't seem to do what it is supposed to. Any help would be highly appreciated.










share|improve this question






















  • Can you try setting pd.set_option('precision', 10)
    – Srce Cde
    Nov 21 '18 at 11:23










  • set_option() will help you to set precision level in the pandas. @Chirag is right. try to put precision level according to your need. you can read this paper here pandas.pydata.org/pandas-docs/stable/options.html
    – Imran Ahmad Ghazali
    Nov 21 '18 at 11:28
















1












1








1







I am struggling to display all the decimals coming from a json feed when I use pandas to convert the data. The code is the following.



import pandas as pd

url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
df = pd.read_json(url, orient='columns', precise_float=True)

df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

print df.head(10000)


The output is:



             Open_time      Open      High       Low     Close   Volume              Close_time  Quote_AV  TradesNo  Taker_base  Taker_quote  Ignore
0 2018-11-21 02:53:00 0.000001 0.000001 0.000001 0.000001 64166 2018-11-21 02:53:59.999 0.077268 6 44229 0.053344 0
1 2018-11-21 02:54:00 0.000001 0.000001 0.000001 0.000001 5030 2018-11-21 02:54:59.999 0.005996 2 1010 0.001212 0
2 2018-11-21 02:55:00 0.000001 0.000001 0.000001 0.000001 61463 2018-11-21 02:55:59.999 0.073756 2 61463 0.073756 0
3 2018-11-21 02:56:00 0.000001 0.000001 0.000001 0.000001 106492 2018-11-21 02:56:59.999 0.127790 2 106492 0.127790 0
4 2018-11-21 02:57:00 0.000001 0.000001 0.000001 0.000001 13215 2018-11-21 02:57:59.999 0.015858 1 13215 0.015858 0
5 2018-11-21 02:58:00 0.000001 0.000001 0.000001 0.000001 25991 2018-11-21 02:58:59.999 0.031181 2 25142 0.030170 0
6 2018-11-21 02:59:00 0.000001 0.000001 0.000001 0.000001 2024424 2018-11-21 02:59:59.999 2.429309 14 1157504 1.389005 0
7 2018-11-21 03:00:00 0.000001 0.000001 0.000001 0.000001 6500 2018-11-21 03:00:59.999 0.007865 1 6500 0.007865 0
8 2018-11-21 03:01:00 0.000001 0.000001 0.000001 0.000001 24128 2018-11-21 03:01:59.999 0.028954 2 0 0.000000 0
9 2018-11-21 03:02:00 0.000001 0.000001 0.000001 0.000001 1126289 2018-11-21 03:02:59.999 1.351547 2 0 0.000000 0
10 2018-11-21 03:03:00 0.000001 0.000001 0.000001 0.000001 91099 2018-11-21 03:03:59.999 0.109695 6 37571 0.045461 0
11 2018-11-21 03:04:00 0.000001 0.000001 0.000001 0.000001 71152 2018-11-21 03:04:59.999 0.086094 1 71152 0.086094 0
12 2018-11-21 03:05:00 0.000001 0.000001 0.000001 0.000001 12222 2018-11-21 03:05:59.999 0.014789 2 12222 0.014789 0


While the json feed has values with more decimals just like:



0 1542768840000
1 "0.00000119"
2 "0.00000120"
3 "0.00000119"
4 "0.00000120"

5 "5030.00000000"
6 1542768899999
7 "0.00599580"
8 2
9 "1010.00000000"
10 "0.00121200"
11 "0"



I tried using the precise_float option but it doesn't seem to do what it is supposed to. Any help would be highly appreciated.










share|improve this question













I am struggling to display all the decimals coming from a json feed when I use pandas to convert the data. The code is the following.



import pandas as pd

url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
df = pd.read_json(url, orient='columns', precise_float=True)

df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

print df.head(10000)


The output is:



             Open_time      Open      High       Low     Close   Volume              Close_time  Quote_AV  TradesNo  Taker_base  Taker_quote  Ignore
0 2018-11-21 02:53:00 0.000001 0.000001 0.000001 0.000001 64166 2018-11-21 02:53:59.999 0.077268 6 44229 0.053344 0
1 2018-11-21 02:54:00 0.000001 0.000001 0.000001 0.000001 5030 2018-11-21 02:54:59.999 0.005996 2 1010 0.001212 0
2 2018-11-21 02:55:00 0.000001 0.000001 0.000001 0.000001 61463 2018-11-21 02:55:59.999 0.073756 2 61463 0.073756 0
3 2018-11-21 02:56:00 0.000001 0.000001 0.000001 0.000001 106492 2018-11-21 02:56:59.999 0.127790 2 106492 0.127790 0
4 2018-11-21 02:57:00 0.000001 0.000001 0.000001 0.000001 13215 2018-11-21 02:57:59.999 0.015858 1 13215 0.015858 0
5 2018-11-21 02:58:00 0.000001 0.000001 0.000001 0.000001 25991 2018-11-21 02:58:59.999 0.031181 2 25142 0.030170 0
6 2018-11-21 02:59:00 0.000001 0.000001 0.000001 0.000001 2024424 2018-11-21 02:59:59.999 2.429309 14 1157504 1.389005 0
7 2018-11-21 03:00:00 0.000001 0.000001 0.000001 0.000001 6500 2018-11-21 03:00:59.999 0.007865 1 6500 0.007865 0
8 2018-11-21 03:01:00 0.000001 0.000001 0.000001 0.000001 24128 2018-11-21 03:01:59.999 0.028954 2 0 0.000000 0
9 2018-11-21 03:02:00 0.000001 0.000001 0.000001 0.000001 1126289 2018-11-21 03:02:59.999 1.351547 2 0 0.000000 0
10 2018-11-21 03:03:00 0.000001 0.000001 0.000001 0.000001 91099 2018-11-21 03:03:59.999 0.109695 6 37571 0.045461 0
11 2018-11-21 03:04:00 0.000001 0.000001 0.000001 0.000001 71152 2018-11-21 03:04:59.999 0.086094 1 71152 0.086094 0
12 2018-11-21 03:05:00 0.000001 0.000001 0.000001 0.000001 12222 2018-11-21 03:05:59.999 0.014789 2 12222 0.014789 0


While the json feed has values with more decimals just like:



0 1542768840000
1 "0.00000119"
2 "0.00000120"
3 "0.00000119"
4 "0.00000120"

5 "5030.00000000"
6 1542768899999
7 "0.00599580"
8 2
9 "1010.00000000"
10 "0.00121200"
11 "0"



I tried using the precise_float option but it doesn't seem to do what it is supposed to. Any help would be highly appreciated.







python pandas binance






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 21 '18 at 11:16









Zoltan veress

82




82












  • Can you try setting pd.set_option('precision', 10)
    – Srce Cde
    Nov 21 '18 at 11:23










  • set_option() will help you to set precision level in the pandas. @Chirag is right. try to put precision level according to your need. you can read this paper here pandas.pydata.org/pandas-docs/stable/options.html
    – Imran Ahmad Ghazali
    Nov 21 '18 at 11:28




















  • Can you try setting pd.set_option('precision', 10)
    – Srce Cde
    Nov 21 '18 at 11:23










  • set_option() will help you to set precision level in the pandas. @Chirag is right. try to put precision level according to your need. you can read this paper here pandas.pydata.org/pandas-docs/stable/options.html
    – Imran Ahmad Ghazali
    Nov 21 '18 at 11:28


















Can you try setting pd.set_option('precision', 10)
– Srce Cde
Nov 21 '18 at 11:23




Can you try setting pd.set_option('precision', 10)
– Srce Cde
Nov 21 '18 at 11:23












set_option() will help you to set precision level in the pandas. @Chirag is right. try to put precision level according to your need. you can read this paper here pandas.pydata.org/pandas-docs/stable/options.html
– Imran Ahmad Ghazali
Nov 21 '18 at 11:28






set_option() will help you to set precision level in the pandas. @Chirag is right. try to put precision level according to your need. you can read this paper here pandas.pydata.org/pandas-docs/stable/options.html
– Imran Ahmad Ghazali
Nov 21 '18 at 11:28














2 Answers
2






active

oldest

votes


















0














import pandas as pd
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
df = pd.read_json(url, orient='columns', precise_float=True)

df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

print(df.head())


OutPut:



            Open_time      Open      High       Low     Close  Volume  
0 2018-11-21 03:17:00 0.000001 0.000001 0.000001 0.000001 960188
1 2018-11-21 03:18:00 0.000001 0.000001 0.000001 0.000001 89803
2 2018-11-21 03:19:00 0.000001 0.000001 0.000001 0.000001 0
3 2018-11-21 03:20:00 0.000001 0.000001 0.000001 0.000001 0
4 2018-11-21 03:21:00 0.000001 0.000001 0.000001 0.000001 438661

Close_time Quote_AV TradesNo Taker_base Taker_quote Ignore
0 2018-11-21 03:17:59.999 1.152354 5 12795 0.015482 0
1 2018-11-21 03:18:59.999 0.108186 6 42283 0.051162 0
2 2018-11-21 03:19:59.999 0.000000 0 0 0.000000 0
3 2018-11-21 03:20:59.999 0.000000 0 0 0.000000 0
4 2018-11-21 03:21:59.999 0.526410 8 1714 0.002074 0




Setting precision:



pd.set_option('precision', 15)
print(df.head())


Output:



            Open_time        Open        High         Low       Close  Volume  
0 2018-11-21 03:13:00 0.00000121 0.00000121 0.00000121 0.00000121 7231
1 2018-11-21 03:14:00 0.00000121 0.00000121 0.00000121 0.00000121 22162
2 2018-11-21 03:15:00 0.00000120 0.00000120 0.00000120 0.00000120 1000
3 2018-11-21 03:16:00 0.00000121 0.00000121 0.00000120 0.00000120 83247
4 2018-11-21 03:17:00 0.00000120 0.00000121 0.00000120 0.00000121 960188

Close_time Quote_AV TradesNo Taker_base Taker_quote
0 2018-11-21 03:13:59.999 0.00874951 1 7231 0.00874951
1 2018-11-21 03:14:59.999 0.02681602 3 22162 0.02681602
2 2018-11-21 03:15:59.999 0.00120000 1 0 0.00000000
3 2018-11-21 03:16:59.999 0.10062838 7 73198 0.08856958
4 2018-11-21 03:17:59.999 1.15235355 5 12795 0.01548195

Ignore
0 0
1 0
2 0
3 0
4 0


Reference: https://pandas.pydata.org/pandas-docs/stable/options.html#setting-startup-options-in-python-ipython-environment






share|improve this answer































    0














    Pandas has different options to set the way a float can be displayed.
    Check it here https://pandas.pydata.org/pandas-docs/stable/options.html



    In your case, assuming you have 8 chars after 0. , one solution can be



    import pandas as pd
    pd.options.display.float_format = '{:,.8f}'.format





    share|improve this answer





















      Your Answer






      StackExchange.ifUsing("editor", function () {
      StackExchange.using("externalEditor", function () {
      StackExchange.using("snippets", function () {
      StackExchange.snippets.init();
      });
      });
      }, "code-snippets");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "1"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53410943%2fpandas-json-load-misses-decimals%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0














      import pandas as pd
      import ssl
      ssl._create_default_https_context = ssl._create_unverified_context

      url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
      df = pd.read_json(url, orient='columns', precise_float=True)

      df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
      df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
      df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

      print(df.head())


      OutPut:



                  Open_time      Open      High       Low     Close  Volume  
      0 2018-11-21 03:17:00 0.000001 0.000001 0.000001 0.000001 960188
      1 2018-11-21 03:18:00 0.000001 0.000001 0.000001 0.000001 89803
      2 2018-11-21 03:19:00 0.000001 0.000001 0.000001 0.000001 0
      3 2018-11-21 03:20:00 0.000001 0.000001 0.000001 0.000001 0
      4 2018-11-21 03:21:00 0.000001 0.000001 0.000001 0.000001 438661

      Close_time Quote_AV TradesNo Taker_base Taker_quote Ignore
      0 2018-11-21 03:17:59.999 1.152354 5 12795 0.015482 0
      1 2018-11-21 03:18:59.999 0.108186 6 42283 0.051162 0
      2 2018-11-21 03:19:59.999 0.000000 0 0 0.000000 0
      3 2018-11-21 03:20:59.999 0.000000 0 0 0.000000 0
      4 2018-11-21 03:21:59.999 0.526410 8 1714 0.002074 0




      Setting precision:



      pd.set_option('precision', 15)
      print(df.head())


      Output:



                  Open_time        Open        High         Low       Close  Volume  
      0 2018-11-21 03:13:00 0.00000121 0.00000121 0.00000121 0.00000121 7231
      1 2018-11-21 03:14:00 0.00000121 0.00000121 0.00000121 0.00000121 22162
      2 2018-11-21 03:15:00 0.00000120 0.00000120 0.00000120 0.00000120 1000
      3 2018-11-21 03:16:00 0.00000121 0.00000121 0.00000120 0.00000120 83247
      4 2018-11-21 03:17:00 0.00000120 0.00000121 0.00000120 0.00000121 960188

      Close_time Quote_AV TradesNo Taker_base Taker_quote
      0 2018-11-21 03:13:59.999 0.00874951 1 7231 0.00874951
      1 2018-11-21 03:14:59.999 0.02681602 3 22162 0.02681602
      2 2018-11-21 03:15:59.999 0.00120000 1 0 0.00000000
      3 2018-11-21 03:16:59.999 0.10062838 7 73198 0.08856958
      4 2018-11-21 03:17:59.999 1.15235355 5 12795 0.01548195

      Ignore
      0 0
      1 0
      2 0
      3 0
      4 0


      Reference: https://pandas.pydata.org/pandas-docs/stable/options.html#setting-startup-options-in-python-ipython-environment






      share|improve this answer




























        0














        import pandas as pd
        import ssl
        ssl._create_default_https_context = ssl._create_unverified_context

        url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
        df = pd.read_json(url, orient='columns', precise_float=True)

        df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
        df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
        df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

        print(df.head())


        OutPut:



                    Open_time      Open      High       Low     Close  Volume  
        0 2018-11-21 03:17:00 0.000001 0.000001 0.000001 0.000001 960188
        1 2018-11-21 03:18:00 0.000001 0.000001 0.000001 0.000001 89803
        2 2018-11-21 03:19:00 0.000001 0.000001 0.000001 0.000001 0
        3 2018-11-21 03:20:00 0.000001 0.000001 0.000001 0.000001 0
        4 2018-11-21 03:21:00 0.000001 0.000001 0.000001 0.000001 438661

        Close_time Quote_AV TradesNo Taker_base Taker_quote Ignore
        0 2018-11-21 03:17:59.999 1.152354 5 12795 0.015482 0
        1 2018-11-21 03:18:59.999 0.108186 6 42283 0.051162 0
        2 2018-11-21 03:19:59.999 0.000000 0 0 0.000000 0
        3 2018-11-21 03:20:59.999 0.000000 0 0 0.000000 0
        4 2018-11-21 03:21:59.999 0.526410 8 1714 0.002074 0




        Setting precision:



        pd.set_option('precision', 15)
        print(df.head())


        Output:



                    Open_time        Open        High         Low       Close  Volume  
        0 2018-11-21 03:13:00 0.00000121 0.00000121 0.00000121 0.00000121 7231
        1 2018-11-21 03:14:00 0.00000121 0.00000121 0.00000121 0.00000121 22162
        2 2018-11-21 03:15:00 0.00000120 0.00000120 0.00000120 0.00000120 1000
        3 2018-11-21 03:16:00 0.00000121 0.00000121 0.00000120 0.00000120 83247
        4 2018-11-21 03:17:00 0.00000120 0.00000121 0.00000120 0.00000121 960188

        Close_time Quote_AV TradesNo Taker_base Taker_quote
        0 2018-11-21 03:13:59.999 0.00874951 1 7231 0.00874951
        1 2018-11-21 03:14:59.999 0.02681602 3 22162 0.02681602
        2 2018-11-21 03:15:59.999 0.00120000 1 0 0.00000000
        3 2018-11-21 03:16:59.999 0.10062838 7 73198 0.08856958
        4 2018-11-21 03:17:59.999 1.15235355 5 12795 0.01548195

        Ignore
        0 0
        1 0
        2 0
        3 0
        4 0


        Reference: https://pandas.pydata.org/pandas-docs/stable/options.html#setting-startup-options-in-python-ipython-environment






        share|improve this answer


























          0












          0








          0






          import pandas as pd
          import ssl
          ssl._create_default_https_context = ssl._create_unverified_context

          url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
          df = pd.read_json(url, orient='columns', precise_float=True)

          df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
          df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
          df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

          print(df.head())


          OutPut:



                      Open_time      Open      High       Low     Close  Volume  
          0 2018-11-21 03:17:00 0.000001 0.000001 0.000001 0.000001 960188
          1 2018-11-21 03:18:00 0.000001 0.000001 0.000001 0.000001 89803
          2 2018-11-21 03:19:00 0.000001 0.000001 0.000001 0.000001 0
          3 2018-11-21 03:20:00 0.000001 0.000001 0.000001 0.000001 0
          4 2018-11-21 03:21:00 0.000001 0.000001 0.000001 0.000001 438661

          Close_time Quote_AV TradesNo Taker_base Taker_quote Ignore
          0 2018-11-21 03:17:59.999 1.152354 5 12795 0.015482 0
          1 2018-11-21 03:18:59.999 0.108186 6 42283 0.051162 0
          2 2018-11-21 03:19:59.999 0.000000 0 0 0.000000 0
          3 2018-11-21 03:20:59.999 0.000000 0 0 0.000000 0
          4 2018-11-21 03:21:59.999 0.526410 8 1714 0.002074 0




          Setting precision:



          pd.set_option('precision', 15)
          print(df.head())


          Output:



                      Open_time        Open        High         Low       Close  Volume  
          0 2018-11-21 03:13:00 0.00000121 0.00000121 0.00000121 0.00000121 7231
          1 2018-11-21 03:14:00 0.00000121 0.00000121 0.00000121 0.00000121 22162
          2 2018-11-21 03:15:00 0.00000120 0.00000120 0.00000120 0.00000120 1000
          3 2018-11-21 03:16:00 0.00000121 0.00000121 0.00000120 0.00000120 83247
          4 2018-11-21 03:17:00 0.00000120 0.00000121 0.00000120 0.00000121 960188

          Close_time Quote_AV TradesNo Taker_base Taker_quote
          0 2018-11-21 03:13:59.999 0.00874951 1 7231 0.00874951
          1 2018-11-21 03:14:59.999 0.02681602 3 22162 0.02681602
          2 2018-11-21 03:15:59.999 0.00120000 1 0 0.00000000
          3 2018-11-21 03:16:59.999 0.10062838 7 73198 0.08856958
          4 2018-11-21 03:17:59.999 1.15235355 5 12795 0.01548195

          Ignore
          0 0
          1 0
          2 0
          3 0
          4 0


          Reference: https://pandas.pydata.org/pandas-docs/stable/options.html#setting-startup-options-in-python-ipython-environment






          share|improve this answer














          import pandas as pd
          import ssl
          ssl._create_default_https_context = ssl._create_unverified_context

          url = 'https://api.binance.com/api/v1/klines?interval=1m&symbol=VETBTC'
          df = pd.read_json(url, orient='columns', precise_float=True)

          df.columns = ["Open_time","Open","High","Low","Close","Volume","Close_time","Quote_AV","TradesNo","Taker_base","Taker_quote","Ignore"]
          df['Open_time'] = pd.to_datetime(df['Open_time'],unit='ms')
          df['Close_time'] = pd.to_datetime(df['Close_time'],unit='ms')

          print(df.head())


          OutPut:



                      Open_time      Open      High       Low     Close  Volume  
          0 2018-11-21 03:17:00 0.000001 0.000001 0.000001 0.000001 960188
          1 2018-11-21 03:18:00 0.000001 0.000001 0.000001 0.000001 89803
          2 2018-11-21 03:19:00 0.000001 0.000001 0.000001 0.000001 0
          3 2018-11-21 03:20:00 0.000001 0.000001 0.000001 0.000001 0
          4 2018-11-21 03:21:00 0.000001 0.000001 0.000001 0.000001 438661

          Close_time Quote_AV TradesNo Taker_base Taker_quote Ignore
          0 2018-11-21 03:17:59.999 1.152354 5 12795 0.015482 0
          1 2018-11-21 03:18:59.999 0.108186 6 42283 0.051162 0
          2 2018-11-21 03:19:59.999 0.000000 0 0 0.000000 0
          3 2018-11-21 03:20:59.999 0.000000 0 0 0.000000 0
          4 2018-11-21 03:21:59.999 0.526410 8 1714 0.002074 0




          Setting precision:



          pd.set_option('precision', 15)
          print(df.head())


          Output:



                      Open_time        Open        High         Low       Close  Volume  
          0 2018-11-21 03:13:00 0.00000121 0.00000121 0.00000121 0.00000121 7231
          1 2018-11-21 03:14:00 0.00000121 0.00000121 0.00000121 0.00000121 22162
          2 2018-11-21 03:15:00 0.00000120 0.00000120 0.00000120 0.00000120 1000
          3 2018-11-21 03:16:00 0.00000121 0.00000121 0.00000120 0.00000120 83247
          4 2018-11-21 03:17:00 0.00000120 0.00000121 0.00000120 0.00000121 960188

          Close_time Quote_AV TradesNo Taker_base Taker_quote
          0 2018-11-21 03:13:59.999 0.00874951 1 7231 0.00874951
          1 2018-11-21 03:14:59.999 0.02681602 3 22162 0.02681602
          2 2018-11-21 03:15:59.999 0.00120000 1 0 0.00000000
          3 2018-11-21 03:16:59.999 0.10062838 7 73198 0.08856958
          4 2018-11-21 03:17:59.999 1.15235355 5 12795 0.01548195

          Ignore
          0 0
          1 0
          2 0
          3 0
          4 0


          Reference: https://pandas.pydata.org/pandas-docs/stable/options.html#setting-startup-options-in-python-ipython-environment







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 21 '18 at 11:42

























          answered Nov 21 '18 at 11:36









          Srce Cde

          1,134511




          1,134511

























              0














              Pandas has different options to set the way a float can be displayed.
              Check it here https://pandas.pydata.org/pandas-docs/stable/options.html



              In your case, assuming you have 8 chars after 0. , one solution can be



              import pandas as pd
              pd.options.display.float_format = '{:,.8f}'.format





              share|improve this answer


























                0














                Pandas has different options to set the way a float can be displayed.
                Check it here https://pandas.pydata.org/pandas-docs/stable/options.html



                In your case, assuming you have 8 chars after 0. , one solution can be



                import pandas as pd
                pd.options.display.float_format = '{:,.8f}'.format





                share|improve this answer
























                  0












                  0








                  0






                  Pandas has different options to set the way a float can be displayed.
                  Check it here https://pandas.pydata.org/pandas-docs/stable/options.html



                  In your case, assuming you have 8 chars after 0. , one solution can be



                  import pandas as pd
                  pd.options.display.float_format = '{:,.8f}'.format





                  share|improve this answer












                  Pandas has different options to set the way a float can be displayed.
                  Check it here https://pandas.pydata.org/pandas-docs/stable/options.html



                  In your case, assuming you have 8 chars after 0. , one solution can be



                  import pandas as pd
                  pd.options.display.float_format = '{:,.8f}'.format






                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Nov 21 '18 at 11:28









                  alec_djinn

                  2,35021835




                  2,35021835






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Stack Overflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53410943%2fpandas-json-load-misses-decimals%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen