PDE with Robin Boundary Condition at alpha Solving with Poisson's Equation












0












$begingroup$


Using a code like this, I am having a hard time applying a Robin Boundary condition for a instead of a dirichlet for the following problem:



IMG OF QUESTION FOR POISSON ROBIN BC



Nx = 10; % Number of sub-segments in x
Ny = 10; % Number of sub-segments in y
a = 0; % Location of boundary 'a' for 'x'
b = 1; % Location of boundary 'b' for 'x'
c = 0; % Location of boundary 'c' for 'y'
d = 1; % Location of boundary 'd' for 'y'
f = @(x,y) x + y; % Defining RH-side function 'f(x,y)'



function [gxy] = g(x,y,a,b,c,d) % Defining boundary condition 'g(x,y)'



gxy = 0; % Default value



if (x==a) % g(a,y), Left BC
gxy = 0;
end



if (x==b) % g(b,y), Right BC
gxy = 1;
end



if (y==c) % g(x,y), Bottom BC
gxy = 0;
end



if (y==d) % g(x,y), Top BC
gxy = 1;
end



end



%%% Setting up System of Eq's Au=B: %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x = linspace(a,b,Nx+1); % Defining locations 'x'
y = linspace(c,d,Ny+1); % Defining locations 'x'
h = (b-a)/Nx; % Sub-interval size, assumed hx=hy=h



% Defining "D" Block
D(1) = 4;
for ii = 2:(Nx-1)
D(ii,ii-1) = -1;
D(ii-1,ii) = -1;
D(ii,ii) = 4;
end



% Defining "I" Block
I = -eye([Nx-1,Nx-1]);



A(1:(Nx-1),1:(Nx-1)) = D;
for ii = 2:(Ny-1)
A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
(ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = D;
A((ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1,...
(ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = I;
A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
(ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1) = I;
end



% Defining RHS
B = zeros((Ny-1)*(Nx-1),1);
for ii = 1:(Ny-1)
for jj = 1:(Nx-1)



B((ii-1)*(Nx-1)+jj) = -h^2*f(x(jj+1),y(ii+1));



% Adding BC to 'B'
if (ii==1)
B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii),a,b,c,d);
end



% Adding BC to 'B'
if (ii==(Ny-1))
B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii+2),a,b,c,d);
end



% Adding BC to 'B'
if (jj==1)
B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj),y(ii+1),a,b,c,d);
end



% Adding BC to 'B'
if (jj==(Nx-1))
B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+2),y(ii+1),a,b,c,d);
end



end
end



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



u = AB; % Solving Au=b for unknowns'u'



% Placing solution 'u' inside larger array with BCs
uu = zeros(Nx+1,Ny+1);%
for ii = 1:(Nx+1)
for jj = 1:(Ny+1)
uu(ii,jj) = g(x(jj),y(ii),a,b,c,d);
end
end
uu(2:(end-1),2:(end-1)) = reshape(u,(Nx-1),(Ny-1))';



% Plotting Solution
contourf(x,y,uu);
title('BVP Solution u(x,y)'); % Create plot title
xlabel('x'); % Label x-axis
ylabel('y'); % Label y-axis
colorbar;
set(findall(gcf,'-property','fontsize'),'fontsize',20); % Set font size










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Using a code like this, I am having a hard time applying a Robin Boundary condition for a instead of a dirichlet for the following problem:



    IMG OF QUESTION FOR POISSON ROBIN BC



    Nx = 10; % Number of sub-segments in x
    Ny = 10; % Number of sub-segments in y
    a = 0; % Location of boundary 'a' for 'x'
    b = 1; % Location of boundary 'b' for 'x'
    c = 0; % Location of boundary 'c' for 'y'
    d = 1; % Location of boundary 'd' for 'y'
    f = @(x,y) x + y; % Defining RH-side function 'f(x,y)'



    function [gxy] = g(x,y,a,b,c,d) % Defining boundary condition 'g(x,y)'



    gxy = 0; % Default value



    if (x==a) % g(a,y), Left BC
    gxy = 0;
    end



    if (x==b) % g(b,y), Right BC
    gxy = 1;
    end



    if (y==c) % g(x,y), Bottom BC
    gxy = 0;
    end



    if (y==d) % g(x,y), Top BC
    gxy = 1;
    end



    end



    %%% Setting up System of Eq's Au=B: %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    x = linspace(a,b,Nx+1); % Defining locations 'x'
    y = linspace(c,d,Ny+1); % Defining locations 'x'
    h = (b-a)/Nx; % Sub-interval size, assumed hx=hy=h



    % Defining "D" Block
    D(1) = 4;
    for ii = 2:(Nx-1)
    D(ii,ii-1) = -1;
    D(ii-1,ii) = -1;
    D(ii,ii) = 4;
    end



    % Defining "I" Block
    I = -eye([Nx-1,Nx-1]);



    A(1:(Nx-1),1:(Nx-1)) = D;
    for ii = 2:(Ny-1)
    A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
    (ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = D;
    A((ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1,...
    (ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = I;
    A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
    (ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1) = I;
    end



    % Defining RHS
    B = zeros((Ny-1)*(Nx-1),1);
    for ii = 1:(Ny-1)
    for jj = 1:(Nx-1)



    B((ii-1)*(Nx-1)+jj) = -h^2*f(x(jj+1),y(ii+1));



    % Adding BC to 'B'
    if (ii==1)
    B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii),a,b,c,d);
    end



    % Adding BC to 'B'
    if (ii==(Ny-1))
    B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii+2),a,b,c,d);
    end



    % Adding BC to 'B'
    if (jj==1)
    B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj),y(ii+1),a,b,c,d);
    end



    % Adding BC to 'B'
    if (jj==(Nx-1))
    B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+2),y(ii+1),a,b,c,d);
    end



    end
    end



    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



    u = AB; % Solving Au=b for unknowns'u'



    % Placing solution 'u' inside larger array with BCs
    uu = zeros(Nx+1,Ny+1);%
    for ii = 1:(Nx+1)
    for jj = 1:(Ny+1)
    uu(ii,jj) = g(x(jj),y(ii),a,b,c,d);
    end
    end
    uu(2:(end-1),2:(end-1)) = reshape(u,(Nx-1),(Ny-1))';



    % Plotting Solution
    contourf(x,y,uu);
    title('BVP Solution u(x,y)'); % Create plot title
    xlabel('x'); % Label x-axis
    ylabel('y'); % Label y-axis
    colorbar;
    set(findall(gcf,'-property','fontsize'),'fontsize',20); % Set font size










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Using a code like this, I am having a hard time applying a Robin Boundary condition for a instead of a dirichlet for the following problem:



      IMG OF QUESTION FOR POISSON ROBIN BC



      Nx = 10; % Number of sub-segments in x
      Ny = 10; % Number of sub-segments in y
      a = 0; % Location of boundary 'a' for 'x'
      b = 1; % Location of boundary 'b' for 'x'
      c = 0; % Location of boundary 'c' for 'y'
      d = 1; % Location of boundary 'd' for 'y'
      f = @(x,y) x + y; % Defining RH-side function 'f(x,y)'



      function [gxy] = g(x,y,a,b,c,d) % Defining boundary condition 'g(x,y)'



      gxy = 0; % Default value



      if (x==a) % g(a,y), Left BC
      gxy = 0;
      end



      if (x==b) % g(b,y), Right BC
      gxy = 1;
      end



      if (y==c) % g(x,y), Bottom BC
      gxy = 0;
      end



      if (y==d) % g(x,y), Top BC
      gxy = 1;
      end



      end



      %%% Setting up System of Eq's Au=B: %%%
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      x = linspace(a,b,Nx+1); % Defining locations 'x'
      y = linspace(c,d,Ny+1); % Defining locations 'x'
      h = (b-a)/Nx; % Sub-interval size, assumed hx=hy=h



      % Defining "D" Block
      D(1) = 4;
      for ii = 2:(Nx-1)
      D(ii,ii-1) = -1;
      D(ii-1,ii) = -1;
      D(ii,ii) = 4;
      end



      % Defining "I" Block
      I = -eye([Nx-1,Nx-1]);



      A(1:(Nx-1),1:(Nx-1)) = D;
      for ii = 2:(Ny-1)
      A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
      (ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = D;
      A((ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1,...
      (ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = I;
      A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
      (ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1) = I;
      end



      % Defining RHS
      B = zeros((Ny-1)*(Nx-1),1);
      for ii = 1:(Ny-1)
      for jj = 1:(Nx-1)



      B((ii-1)*(Nx-1)+jj) = -h^2*f(x(jj+1),y(ii+1));



      % Adding BC to 'B'
      if (ii==1)
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii),a,b,c,d);
      end



      % Adding BC to 'B'
      if (ii==(Ny-1))
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii+2),a,b,c,d);
      end



      % Adding BC to 'B'
      if (jj==1)
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj),y(ii+1),a,b,c,d);
      end



      % Adding BC to 'B'
      if (jj==(Nx-1))
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+2),y(ii+1),a,b,c,d);
      end



      end
      end



      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



      u = AB; % Solving Au=b for unknowns'u'



      % Placing solution 'u' inside larger array with BCs
      uu = zeros(Nx+1,Ny+1);%
      for ii = 1:(Nx+1)
      for jj = 1:(Ny+1)
      uu(ii,jj) = g(x(jj),y(ii),a,b,c,d);
      end
      end
      uu(2:(end-1),2:(end-1)) = reshape(u,(Nx-1),(Ny-1))';



      % Plotting Solution
      contourf(x,y,uu);
      title('BVP Solution u(x,y)'); % Create plot title
      xlabel('x'); % Label x-axis
      ylabel('y'); % Label y-axis
      colorbar;
      set(findall(gcf,'-property','fontsize'),'fontsize',20); % Set font size










      share|cite|improve this question









      $endgroup$




      Using a code like this, I am having a hard time applying a Robin Boundary condition for a instead of a dirichlet for the following problem:



      IMG OF QUESTION FOR POISSON ROBIN BC



      Nx = 10; % Number of sub-segments in x
      Ny = 10; % Number of sub-segments in y
      a = 0; % Location of boundary 'a' for 'x'
      b = 1; % Location of boundary 'b' for 'x'
      c = 0; % Location of boundary 'c' for 'y'
      d = 1; % Location of boundary 'd' for 'y'
      f = @(x,y) x + y; % Defining RH-side function 'f(x,y)'



      function [gxy] = g(x,y,a,b,c,d) % Defining boundary condition 'g(x,y)'



      gxy = 0; % Default value



      if (x==a) % g(a,y), Left BC
      gxy = 0;
      end



      if (x==b) % g(b,y), Right BC
      gxy = 1;
      end



      if (y==c) % g(x,y), Bottom BC
      gxy = 0;
      end



      if (y==d) % g(x,y), Top BC
      gxy = 1;
      end



      end



      %%% Setting up System of Eq's Au=B: %%%
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      x = linspace(a,b,Nx+1); % Defining locations 'x'
      y = linspace(c,d,Ny+1); % Defining locations 'x'
      h = (b-a)/Nx; % Sub-interval size, assumed hx=hy=h



      % Defining "D" Block
      D(1) = 4;
      for ii = 2:(Nx-1)
      D(ii,ii-1) = -1;
      D(ii-1,ii) = -1;
      D(ii,ii) = 4;
      end



      % Defining "I" Block
      I = -eye([Nx-1,Nx-1]);



      A(1:(Nx-1),1:(Nx-1)) = D;
      for ii = 2:(Ny-1)
      A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
      (ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = D;
      A((ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1,...
      (ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1) = I;
      A((ii-1)(Nx-1)+1:(ii-1)(Nx-1)+Nx-1,...
      (ii-2)(Nx-1)+1:(ii-2)(Nx-1)+Nx-1) = I;
      end



      % Defining RHS
      B = zeros((Ny-1)*(Nx-1),1);
      for ii = 1:(Ny-1)
      for jj = 1:(Nx-1)



      B((ii-1)*(Nx-1)+jj) = -h^2*f(x(jj+1),y(ii+1));



      % Adding BC to 'B'
      if (ii==1)
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii),a,b,c,d);
      end



      % Adding BC to 'B'
      if (ii==(Ny-1))
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+1),y(ii+2),a,b,c,d);
      end



      % Adding BC to 'B'
      if (jj==1)
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj),y(ii+1),a,b,c,d);
      end



      % Adding BC to 'B'
      if (jj==(Nx-1))
      B((ii-1)(Nx-1)+jj) = B((ii-1)(Nx-1)+jj) + g(x(jj+2),y(ii+1),a,b,c,d);
      end



      end
      end



      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



      u = AB; % Solving Au=b for unknowns'u'



      % Placing solution 'u' inside larger array with BCs
      uu = zeros(Nx+1,Ny+1);%
      for ii = 1:(Nx+1)
      for jj = 1:(Ny+1)
      uu(ii,jj) = g(x(jj),y(ii),a,b,c,d);
      end
      end
      uu(2:(end-1),2:(end-1)) = reshape(u,(Nx-1),(Ny-1))';



      % Plotting Solution
      contourf(x,y,uu);
      title('BVP Solution u(x,y)'); % Create plot title
      xlabel('x'); % Label x-axis
      ylabel('y'); % Label y-axis
      colorbar;
      set(findall(gcf,'-property','fontsize'),'fontsize',20); % Set font size







      partial-derivative matlab boundary-value-problem poissons-equation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 4 '18 at 22:34









      George SGeorge S

      11




      11






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026272%2fpde-with-robin-boundary-condition-at-alpha-solving-with-poissons-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026272%2fpde-with-robin-boundary-condition-at-alpha-solving-with-poissons-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen