Show that $|y-y_0|<text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2}) implies leftvert...
$begingroup$
I need to show that if $|y-y_0|<text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})$ and $yneq 0$ and $y_0neq 0$ are true, then the following inequality is also true:
$$ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$$
I tried to check the information given by the inequalities $|y-y_0|<frac{|y_0|}{2}$ and $|y-y_0|<frac{epsilon|y_0|^2}{2}$. Then I arrived from those inequalities to these ones: $|frac{y}{y_0}-1|<frac{1}{2}$ and $|frac{1}{y} cdot frac{y^2}{y_0^2}-frac{1}{y_0}|<frac{epsilon}{2}$.
I multiplied the inequality $|y-y_0|<frac{epsilon|y_0|^2}{2}$ by $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$. It follows that $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. Because $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$ is true for the absolute value function, we get $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$...
I am still trying to figure out, how I can prove $ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$
Any help is appreciated. Thanks in advance.
Regards,
Ahmed Hossam
real-analysis calculus inequality
$endgroup$
add a comment |
$begingroup$
I need to show that if $|y-y_0|<text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})$ and $yneq 0$ and $y_0neq 0$ are true, then the following inequality is also true:
$$ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$$
I tried to check the information given by the inequalities $|y-y_0|<frac{|y_0|}{2}$ and $|y-y_0|<frac{epsilon|y_0|^2}{2}$. Then I arrived from those inequalities to these ones: $|frac{y}{y_0}-1|<frac{1}{2}$ and $|frac{1}{y} cdot frac{y^2}{y_0^2}-frac{1}{y_0}|<frac{epsilon}{2}$.
I multiplied the inequality $|y-y_0|<frac{epsilon|y_0|^2}{2}$ by $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$. It follows that $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. Because $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$ is true for the absolute value function, we get $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$...
I am still trying to figure out, how I can prove $ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$
Any help is appreciated. Thanks in advance.
Regards,
Ahmed Hossam
real-analysis calculus inequality
$endgroup$
add a comment |
$begingroup$
I need to show that if $|y-y_0|<text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})$ and $yneq 0$ and $y_0neq 0$ are true, then the following inequality is also true:
$$ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$$
I tried to check the information given by the inequalities $|y-y_0|<frac{|y_0|}{2}$ and $|y-y_0|<frac{epsilon|y_0|^2}{2}$. Then I arrived from those inequalities to these ones: $|frac{y}{y_0}-1|<frac{1}{2}$ and $|frac{1}{y} cdot frac{y^2}{y_0^2}-frac{1}{y_0}|<frac{epsilon}{2}$.
I multiplied the inequality $|y-y_0|<frac{epsilon|y_0|^2}{2}$ by $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$. It follows that $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. Because $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$ is true for the absolute value function, we get $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$...
I am still trying to figure out, how I can prove $ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$
Any help is appreciated. Thanks in advance.
Regards,
Ahmed Hossam
real-analysis calculus inequality
$endgroup$
I need to show that if $|y-y_0|<text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})$ and $yneq 0$ and $y_0neq 0$ are true, then the following inequality is also true:
$$ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$$
I tried to check the information given by the inequalities $|y-y_0|<frac{|y_0|}{2}$ and $|y-y_0|<frac{epsilon|y_0|^2}{2}$. Then I arrived from those inequalities to these ones: $|frac{y}{y_0}-1|<frac{1}{2}$ and $|frac{1}{y} cdot frac{y^2}{y_0^2}-frac{1}{y_0}|<frac{epsilon}{2}$.
I multiplied the inequality $|y-y_0|<frac{epsilon|y_0|^2}{2}$ by $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$. It follows that $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. Because $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$ is true for the absolute value function, we get $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$...
I am still trying to figure out, how I can prove $ leftvert frac{1}{y}-frac{1}{y_0} rightvert < epsilon.$
Any help is appreciated. Thanks in advance.
Regards,
Ahmed Hossam
real-analysis calculus inequality
real-analysis calculus inequality
edited Dec 9 '18 at 20:14
Ahmed Hossam
asked Dec 9 '18 at 19:48
Ahmed HossamAhmed Hossam
126
126
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Case 1:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{|y_0|}{2}$$
$$frac{|y_0|}{2}lefrac{epsilon|y_0|^2}{2}$$
$$frac1{|y_0|}leepsilontag{1}$$
In this particular case:
$$|y-y_0|lt frac{|y_0|}{2}$$
$$-frac{|y_0|}{2}<y-y_0lt frac{|y_0|}{2}$$
$$y_0-frac{|y_0|}{2}<y< y_0+frac{|y_0|}{2}tag{2}$$
If $y_0>0$, (2) becomes:
$$frac{y_0}{2}<y< frac{3y_0}{2}$$
$$frac{2}{y_0}>frac1y> frac{2}{3y_0}$$
$$frac{2}{y_0}-frac{1}{y_0}>frac1y - frac{1}{y_0}> frac{2}{3y_0}-frac{1}{y_0}$$
$$frac{1}{y_0}>frac1y - frac{1}{y_0}> -frac{1}{3y_0}$$
$$frac{1}{y_0}>|frac1y - frac{1}{y_0}|tag{3}$$
Because of (1) and (3) we have:
$$epsilon>|frac1y - frac{1}{y_0}|$$
If $y_0<0$, (2) becomes:
$$y_0+frac{y_0}{2}<y< y_0-frac{y_0}{2}$$
$$frac{3y_0}{2}<y< frac{y_0}{2}$$
Notice that $y$ is squeezed between negative values so we can write:
$$frac2{3y_0}>frac1y> frac2{y_0}$$
$$frac2{3y_0}-frac{1}{y_0}>frac1y-frac1{y_0}> frac2{y_0}-frac1{y_0}$$
$$-frac{1}{3y_0}>frac1y-frac1{y_0}> frac1{y_0}$$
$$|frac1y-frac1{y_0}|< frac1{|y_0|}tag{4}$$
Because of (1) and (4) we have:
$$|frac1y-frac1{y_0}|< epsilon$$
Case 2:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{epsilon|y_0|^2}{2}$$
$$frac{|y_0|}{2}gefrac{epsilon|y_0|^2}{2})$$
$$1geepsilon|y_0|tag{5}$$
In this particular case:
$$|y-y_0|lt frac{epsilon|y_0|^2}{2}$$
$$-frac{epsilon|y_0|^2}{2}lt y-y_0lt frac{epsilon|y_0|^2}{2}$$
$$y_0-frac{epsilon|y_0|^2}{2}lt y lt y_0+frac{epsilon|y_0|^2}{2}tag{6}$$
For $y_0>0$, (6) becomes:
$$y_0-frac{epsilon y_0^2}{2}lt y lt y_0+frac{epsilon y_0^2}{2}$$
Notice that because of (5) $y$ is squeezed between positive values so we can write:
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}gt frac1y gt frac1{y_0+frac{epsilon y_0^2}{2}}$$
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}-frac 1{y_0} gt frac1y-frac 1{y_0} gt frac1{y_0+frac{epsilon y_0^2}{2}}-frac 1{y_0}$$
This evolves into:
$$frac{epsilon}{2-epsilon y_0}>frac1y-frac 1{y_0}>-frac{epsilon}{2+epsilon y_0}tag{7}$$
Notice that because of (5):
$$2-epsilon y_0 ge 1 implies epsilon ge frac{epsilon}{2-epsilon y_0}$$
$$2+epsilon y_0 ge 2 implies -frac{epsilon}{2+epsilon y_0}>-frac{epsilon}{2}$$
With this in mind, (7) now becomes:
$$epsilon >frac1y-frac 1{y_0}>-frac{epsilon}{2}$$
$$epsilon >|frac1y-frac 1{y_0}|$$
I'm leaving the last case ($y_0<0$) to you as an exercise.
$endgroup$
$begingroup$
Thanks for your answer. The equation $|y-y_0|<frac{epsilon|y_0|^2}{2}$ can be multiplied with $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$ . Thus $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. It is $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$, That's why $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$ is true. $||y|-|y_0||leq |y-y_0|<frac{|y_0|}{2} Rightarrow |frac{|y|}{|y_0|}-1|<frac{1}{2} Rightarrow 2>frac{|y_0|}{|y|}>frac{2}{3}$. This means $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}<epsilon$, because $2>frac{|y_0|}{|y|}$.
$endgroup$
– Ahmed Hossam
Dec 10 '18 at 19:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032879%2fshow-that-y-y-0-textmin-fracy-02-frac-epsilony-022-implie%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Case 1:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{|y_0|}{2}$$
$$frac{|y_0|}{2}lefrac{epsilon|y_0|^2}{2}$$
$$frac1{|y_0|}leepsilontag{1}$$
In this particular case:
$$|y-y_0|lt frac{|y_0|}{2}$$
$$-frac{|y_0|}{2}<y-y_0lt frac{|y_0|}{2}$$
$$y_0-frac{|y_0|}{2}<y< y_0+frac{|y_0|}{2}tag{2}$$
If $y_0>0$, (2) becomes:
$$frac{y_0}{2}<y< frac{3y_0}{2}$$
$$frac{2}{y_0}>frac1y> frac{2}{3y_0}$$
$$frac{2}{y_0}-frac{1}{y_0}>frac1y - frac{1}{y_0}> frac{2}{3y_0}-frac{1}{y_0}$$
$$frac{1}{y_0}>frac1y - frac{1}{y_0}> -frac{1}{3y_0}$$
$$frac{1}{y_0}>|frac1y - frac{1}{y_0}|tag{3}$$
Because of (1) and (3) we have:
$$epsilon>|frac1y - frac{1}{y_0}|$$
If $y_0<0$, (2) becomes:
$$y_0+frac{y_0}{2}<y< y_0-frac{y_0}{2}$$
$$frac{3y_0}{2}<y< frac{y_0}{2}$$
Notice that $y$ is squeezed between negative values so we can write:
$$frac2{3y_0}>frac1y> frac2{y_0}$$
$$frac2{3y_0}-frac{1}{y_0}>frac1y-frac1{y_0}> frac2{y_0}-frac1{y_0}$$
$$-frac{1}{3y_0}>frac1y-frac1{y_0}> frac1{y_0}$$
$$|frac1y-frac1{y_0}|< frac1{|y_0|}tag{4}$$
Because of (1) and (4) we have:
$$|frac1y-frac1{y_0}|< epsilon$$
Case 2:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{epsilon|y_0|^2}{2}$$
$$frac{|y_0|}{2}gefrac{epsilon|y_0|^2}{2})$$
$$1geepsilon|y_0|tag{5}$$
In this particular case:
$$|y-y_0|lt frac{epsilon|y_0|^2}{2}$$
$$-frac{epsilon|y_0|^2}{2}lt y-y_0lt frac{epsilon|y_0|^2}{2}$$
$$y_0-frac{epsilon|y_0|^2}{2}lt y lt y_0+frac{epsilon|y_0|^2}{2}tag{6}$$
For $y_0>0$, (6) becomes:
$$y_0-frac{epsilon y_0^2}{2}lt y lt y_0+frac{epsilon y_0^2}{2}$$
Notice that because of (5) $y$ is squeezed between positive values so we can write:
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}gt frac1y gt frac1{y_0+frac{epsilon y_0^2}{2}}$$
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}-frac 1{y_0} gt frac1y-frac 1{y_0} gt frac1{y_0+frac{epsilon y_0^2}{2}}-frac 1{y_0}$$
This evolves into:
$$frac{epsilon}{2-epsilon y_0}>frac1y-frac 1{y_0}>-frac{epsilon}{2+epsilon y_0}tag{7}$$
Notice that because of (5):
$$2-epsilon y_0 ge 1 implies epsilon ge frac{epsilon}{2-epsilon y_0}$$
$$2+epsilon y_0 ge 2 implies -frac{epsilon}{2+epsilon y_0}>-frac{epsilon}{2}$$
With this in mind, (7) now becomes:
$$epsilon >frac1y-frac 1{y_0}>-frac{epsilon}{2}$$
$$epsilon >|frac1y-frac 1{y_0}|$$
I'm leaving the last case ($y_0<0$) to you as an exercise.
$endgroup$
$begingroup$
Thanks for your answer. The equation $|y-y_0|<frac{epsilon|y_0|^2}{2}$ can be multiplied with $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$ . Thus $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. It is $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$, That's why $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$ is true. $||y|-|y_0||leq |y-y_0|<frac{|y_0|}{2} Rightarrow |frac{|y|}{|y_0|}-1|<frac{1}{2} Rightarrow 2>frac{|y_0|}{|y|}>frac{2}{3}$. This means $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}<epsilon$, because $2>frac{|y_0|}{|y|}$.
$endgroup$
– Ahmed Hossam
Dec 10 '18 at 19:20
add a comment |
$begingroup$
Case 1:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{|y_0|}{2}$$
$$frac{|y_0|}{2}lefrac{epsilon|y_0|^2}{2}$$
$$frac1{|y_0|}leepsilontag{1}$$
In this particular case:
$$|y-y_0|lt frac{|y_0|}{2}$$
$$-frac{|y_0|}{2}<y-y_0lt frac{|y_0|}{2}$$
$$y_0-frac{|y_0|}{2}<y< y_0+frac{|y_0|}{2}tag{2}$$
If $y_0>0$, (2) becomes:
$$frac{y_0}{2}<y< frac{3y_0}{2}$$
$$frac{2}{y_0}>frac1y> frac{2}{3y_0}$$
$$frac{2}{y_0}-frac{1}{y_0}>frac1y - frac{1}{y_0}> frac{2}{3y_0}-frac{1}{y_0}$$
$$frac{1}{y_0}>frac1y - frac{1}{y_0}> -frac{1}{3y_0}$$
$$frac{1}{y_0}>|frac1y - frac{1}{y_0}|tag{3}$$
Because of (1) and (3) we have:
$$epsilon>|frac1y - frac{1}{y_0}|$$
If $y_0<0$, (2) becomes:
$$y_0+frac{y_0}{2}<y< y_0-frac{y_0}{2}$$
$$frac{3y_0}{2}<y< frac{y_0}{2}$$
Notice that $y$ is squeezed between negative values so we can write:
$$frac2{3y_0}>frac1y> frac2{y_0}$$
$$frac2{3y_0}-frac{1}{y_0}>frac1y-frac1{y_0}> frac2{y_0}-frac1{y_0}$$
$$-frac{1}{3y_0}>frac1y-frac1{y_0}> frac1{y_0}$$
$$|frac1y-frac1{y_0}|< frac1{|y_0|}tag{4}$$
Because of (1) and (4) we have:
$$|frac1y-frac1{y_0}|< epsilon$$
Case 2:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{epsilon|y_0|^2}{2}$$
$$frac{|y_0|}{2}gefrac{epsilon|y_0|^2}{2})$$
$$1geepsilon|y_0|tag{5}$$
In this particular case:
$$|y-y_0|lt frac{epsilon|y_0|^2}{2}$$
$$-frac{epsilon|y_0|^2}{2}lt y-y_0lt frac{epsilon|y_0|^2}{2}$$
$$y_0-frac{epsilon|y_0|^2}{2}lt y lt y_0+frac{epsilon|y_0|^2}{2}tag{6}$$
For $y_0>0$, (6) becomes:
$$y_0-frac{epsilon y_0^2}{2}lt y lt y_0+frac{epsilon y_0^2}{2}$$
Notice that because of (5) $y$ is squeezed between positive values so we can write:
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}gt frac1y gt frac1{y_0+frac{epsilon y_0^2}{2}}$$
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}-frac 1{y_0} gt frac1y-frac 1{y_0} gt frac1{y_0+frac{epsilon y_0^2}{2}}-frac 1{y_0}$$
This evolves into:
$$frac{epsilon}{2-epsilon y_0}>frac1y-frac 1{y_0}>-frac{epsilon}{2+epsilon y_0}tag{7}$$
Notice that because of (5):
$$2-epsilon y_0 ge 1 implies epsilon ge frac{epsilon}{2-epsilon y_0}$$
$$2+epsilon y_0 ge 2 implies -frac{epsilon}{2+epsilon y_0}>-frac{epsilon}{2}$$
With this in mind, (7) now becomes:
$$epsilon >frac1y-frac 1{y_0}>-frac{epsilon}{2}$$
$$epsilon >|frac1y-frac 1{y_0}|$$
I'm leaving the last case ($y_0<0$) to you as an exercise.
$endgroup$
$begingroup$
Thanks for your answer. The equation $|y-y_0|<frac{epsilon|y_0|^2}{2}$ can be multiplied with $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$ . Thus $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. It is $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$, That's why $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$ is true. $||y|-|y_0||leq |y-y_0|<frac{|y_0|}{2} Rightarrow |frac{|y|}{|y_0|}-1|<frac{1}{2} Rightarrow 2>frac{|y_0|}{|y|}>frac{2}{3}$. This means $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}<epsilon$, because $2>frac{|y_0|}{|y|}$.
$endgroup$
– Ahmed Hossam
Dec 10 '18 at 19:20
add a comment |
$begingroup$
Case 1:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{|y_0|}{2}$$
$$frac{|y_0|}{2}lefrac{epsilon|y_0|^2}{2}$$
$$frac1{|y_0|}leepsilontag{1}$$
In this particular case:
$$|y-y_0|lt frac{|y_0|}{2}$$
$$-frac{|y_0|}{2}<y-y_0lt frac{|y_0|}{2}$$
$$y_0-frac{|y_0|}{2}<y< y_0+frac{|y_0|}{2}tag{2}$$
If $y_0>0$, (2) becomes:
$$frac{y_0}{2}<y< frac{3y_0}{2}$$
$$frac{2}{y_0}>frac1y> frac{2}{3y_0}$$
$$frac{2}{y_0}-frac{1}{y_0}>frac1y - frac{1}{y_0}> frac{2}{3y_0}-frac{1}{y_0}$$
$$frac{1}{y_0}>frac1y - frac{1}{y_0}> -frac{1}{3y_0}$$
$$frac{1}{y_0}>|frac1y - frac{1}{y_0}|tag{3}$$
Because of (1) and (3) we have:
$$epsilon>|frac1y - frac{1}{y_0}|$$
If $y_0<0$, (2) becomes:
$$y_0+frac{y_0}{2}<y< y_0-frac{y_0}{2}$$
$$frac{3y_0}{2}<y< frac{y_0}{2}$$
Notice that $y$ is squeezed between negative values so we can write:
$$frac2{3y_0}>frac1y> frac2{y_0}$$
$$frac2{3y_0}-frac{1}{y_0}>frac1y-frac1{y_0}> frac2{y_0}-frac1{y_0}$$
$$-frac{1}{3y_0}>frac1y-frac1{y_0}> frac1{y_0}$$
$$|frac1y-frac1{y_0}|< frac1{|y_0|}tag{4}$$
Because of (1) and (4) we have:
$$|frac1y-frac1{y_0}|< epsilon$$
Case 2:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{epsilon|y_0|^2}{2}$$
$$frac{|y_0|}{2}gefrac{epsilon|y_0|^2}{2})$$
$$1geepsilon|y_0|tag{5}$$
In this particular case:
$$|y-y_0|lt frac{epsilon|y_0|^2}{2}$$
$$-frac{epsilon|y_0|^2}{2}lt y-y_0lt frac{epsilon|y_0|^2}{2}$$
$$y_0-frac{epsilon|y_0|^2}{2}lt y lt y_0+frac{epsilon|y_0|^2}{2}tag{6}$$
For $y_0>0$, (6) becomes:
$$y_0-frac{epsilon y_0^2}{2}lt y lt y_0+frac{epsilon y_0^2}{2}$$
Notice that because of (5) $y$ is squeezed between positive values so we can write:
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}gt frac1y gt frac1{y_0+frac{epsilon y_0^2}{2}}$$
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}-frac 1{y_0} gt frac1y-frac 1{y_0} gt frac1{y_0+frac{epsilon y_0^2}{2}}-frac 1{y_0}$$
This evolves into:
$$frac{epsilon}{2-epsilon y_0}>frac1y-frac 1{y_0}>-frac{epsilon}{2+epsilon y_0}tag{7}$$
Notice that because of (5):
$$2-epsilon y_0 ge 1 implies epsilon ge frac{epsilon}{2-epsilon y_0}$$
$$2+epsilon y_0 ge 2 implies -frac{epsilon}{2+epsilon y_0}>-frac{epsilon}{2}$$
With this in mind, (7) now becomes:
$$epsilon >frac1y-frac 1{y_0}>-frac{epsilon}{2}$$
$$epsilon >|frac1y-frac 1{y_0}|$$
I'm leaving the last case ($y_0<0$) to you as an exercise.
$endgroup$
Case 1:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{|y_0|}{2}$$
$$frac{|y_0|}{2}lefrac{epsilon|y_0|^2}{2}$$
$$frac1{|y_0|}leepsilontag{1}$$
In this particular case:
$$|y-y_0|lt frac{|y_0|}{2}$$
$$-frac{|y_0|}{2}<y-y_0lt frac{|y_0|}{2}$$
$$y_0-frac{|y_0|}{2}<y< y_0+frac{|y_0|}{2}tag{2}$$
If $y_0>0$, (2) becomes:
$$frac{y_0}{2}<y< frac{3y_0}{2}$$
$$frac{2}{y_0}>frac1y> frac{2}{3y_0}$$
$$frac{2}{y_0}-frac{1}{y_0}>frac1y - frac{1}{y_0}> frac{2}{3y_0}-frac{1}{y_0}$$
$$frac{1}{y_0}>frac1y - frac{1}{y_0}> -frac{1}{3y_0}$$
$$frac{1}{y_0}>|frac1y - frac{1}{y_0}|tag{3}$$
Because of (1) and (3) we have:
$$epsilon>|frac1y - frac{1}{y_0}|$$
If $y_0<0$, (2) becomes:
$$y_0+frac{y_0}{2}<y< y_0-frac{y_0}{2}$$
$$frac{3y_0}{2}<y< frac{y_0}{2}$$
Notice that $y$ is squeezed between negative values so we can write:
$$frac2{3y_0}>frac1y> frac2{y_0}$$
$$frac2{3y_0}-frac{1}{y_0}>frac1y-frac1{y_0}> frac2{y_0}-frac1{y_0}$$
$$-frac{1}{3y_0}>frac1y-frac1{y_0}> frac1{y_0}$$
$$|frac1y-frac1{y_0}|< frac1{|y_0|}tag{4}$$
Because of (1) and (4) we have:
$$|frac1y-frac1{y_0}|< epsilon$$
Case 2:
$$text{min}(frac{|y_0|}{2},frac{epsilon|y_0|^2}{2})=frac{epsilon|y_0|^2}{2}$$
$$frac{|y_0|}{2}gefrac{epsilon|y_0|^2}{2})$$
$$1geepsilon|y_0|tag{5}$$
In this particular case:
$$|y-y_0|lt frac{epsilon|y_0|^2}{2}$$
$$-frac{epsilon|y_0|^2}{2}lt y-y_0lt frac{epsilon|y_0|^2}{2}$$
$$y_0-frac{epsilon|y_0|^2}{2}lt y lt y_0+frac{epsilon|y_0|^2}{2}tag{6}$$
For $y_0>0$, (6) becomes:
$$y_0-frac{epsilon y_0^2}{2}lt y lt y_0+frac{epsilon y_0^2}{2}$$
Notice that because of (5) $y$ is squeezed between positive values so we can write:
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}gt frac1y gt frac1{y_0+frac{epsilon y_0^2}{2}}$$
$$frac{1}{y_0-frac{epsilon y_0^2}{2}}-frac 1{y_0} gt frac1y-frac 1{y_0} gt frac1{y_0+frac{epsilon y_0^2}{2}}-frac 1{y_0}$$
This evolves into:
$$frac{epsilon}{2-epsilon y_0}>frac1y-frac 1{y_0}>-frac{epsilon}{2+epsilon y_0}tag{7}$$
Notice that because of (5):
$$2-epsilon y_0 ge 1 implies epsilon ge frac{epsilon}{2-epsilon y_0}$$
$$2+epsilon y_0 ge 2 implies -frac{epsilon}{2+epsilon y_0}>-frac{epsilon}{2}$$
With this in mind, (7) now becomes:
$$epsilon >frac1y-frac 1{y_0}>-frac{epsilon}{2}$$
$$epsilon >|frac1y-frac 1{y_0}|$$
I'm leaving the last case ($y_0<0$) to you as an exercise.
edited Dec 10 '18 at 10:51
answered Dec 10 '18 at 10:42
OldboyOldboy
7,6851935
7,6851935
$begingroup$
Thanks for your answer. The equation $|y-y_0|<frac{epsilon|y_0|^2}{2}$ can be multiplied with $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$ . Thus $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. It is $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$, That's why $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$ is true. $||y|-|y_0||leq |y-y_0|<frac{|y_0|}{2} Rightarrow |frac{|y|}{|y_0|}-1|<frac{1}{2} Rightarrow 2>frac{|y_0|}{|y|}>frac{2}{3}$. This means $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}<epsilon$, because $2>frac{|y_0|}{|y|}$.
$endgroup$
– Ahmed Hossam
Dec 10 '18 at 19:20
add a comment |
$begingroup$
Thanks for your answer. The equation $|y-y_0|<frac{epsilon|y_0|^2}{2}$ can be multiplied with $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$ . Thus $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. It is $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$, That's why $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$ is true. $||y|-|y_0||leq |y-y_0|<frac{|y_0|}{2} Rightarrow |frac{|y|}{|y_0|}-1|<frac{1}{2} Rightarrow 2>frac{|y_0|}{|y|}>frac{2}{3}$. This means $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}<epsilon$, because $2>frac{|y_0|}{|y|}$.
$endgroup$
– Ahmed Hossam
Dec 10 '18 at 19:20
$begingroup$
Thanks for your answer. The equation $|y-y_0|<frac{epsilon|y_0|^2}{2}$ can be multiplied with $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$ . Thus $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. It is $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$, That's why $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$ is true. $||y|-|y_0||leq |y-y_0|<frac{|y_0|}{2} Rightarrow |frac{|y|}{|y_0|}-1|<frac{1}{2} Rightarrow 2>frac{|y_0|}{|y|}>frac{2}{3}$. This means $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}<epsilon$, because $2>frac{|y_0|}{|y|}$.
$endgroup$
– Ahmed Hossam
Dec 10 '18 at 19:20
$begingroup$
Thanks for your answer. The equation $|y-y_0|<frac{epsilon|y_0|^2}{2}$ can be multiplied with $frac{1}{|y y_0|}$ , because $frac{1}{|yy_0|}>0$ . Thus $|frac{1}{y_0}-frac{1}{y}|<frac{epsilon|y_0|}{2|y|}$. It is $|frac{1}{y_0}-frac{1}{y}|=|frac{1}{y}-frac{1}{y_0}|$, That's why $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}$ is true. $||y|-|y_0||leq |y-y_0|<frac{|y_0|}{2} Rightarrow |frac{|y|}{|y_0|}-1|<frac{1}{2} Rightarrow 2>frac{|y_0|}{|y|}>frac{2}{3}$. This means $|frac{1}{y}-frac{1}{y_0}|<frac{epsilon|y_0|}{2|y|}<epsilon$, because $2>frac{|y_0|}{|y|}$.
$endgroup$
– Ahmed Hossam
Dec 10 '18 at 19:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032879%2fshow-that-y-y-0-textmin-fracy-02-frac-epsilony-022-implie%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown