Why Hahn-Banach theorem is needed for the following theorem?












-1














One theorem in Rudin's Real and complex analysis says the following:



If $X$ is a normed linear space and if $x_0 in X$, $x_0neq 0$, there is a bounded linear funcitonal $f$ on $X$, of norm 1, so that $f(x_0)=||x_0||$.



He uses the Hahn-Banach theorem to prove it, but why we cannot just say that $f(x)=||x||$ works?










share|cite|improve this question



























    -1














    One theorem in Rudin's Real and complex analysis says the following:



    If $X$ is a normed linear space and if $x_0 in X$, $x_0neq 0$, there is a bounded linear funcitonal $f$ on $X$, of norm 1, so that $f(x_0)=||x_0||$.



    He uses the Hahn-Banach theorem to prove it, but why we cannot just say that $f(x)=||x||$ works?










    share|cite|improve this question

























      -1












      -1








      -1







      One theorem in Rudin's Real and complex analysis says the following:



      If $X$ is a normed linear space and if $x_0 in X$, $x_0neq 0$, there is a bounded linear funcitonal $f$ on $X$, of norm 1, so that $f(x_0)=||x_0||$.



      He uses the Hahn-Banach theorem to prove it, but why we cannot just say that $f(x)=||x||$ works?










      share|cite|improve this question













      One theorem in Rudin's Real and complex analysis says the following:



      If $X$ is a normed linear space and if $x_0 in X$, $x_0neq 0$, there is a bounded linear funcitonal $f$ on $X$, of norm 1, so that $f(x_0)=||x_0||$.



      He uses the Hahn-Banach theorem to prove it, but why we cannot just say that $f(x)=||x||$ works?







      functional-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 3 '18 at 14:37









      eigenvalueeigenvalue

      11




      11






















          2 Answers
          2






          active

          oldest

          votes


















          2














          No, we cannot, because that map is not a linear map.






          share|cite|improve this answer





























            2














            $f(x)=|x|$ is not linear!



            There is no guarantee that $f(x+y) = |x+y|$ is equal to $f(x)+f(y) = |x|+|y|$.



            In fact this is almost never happens.






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024137%2fwhy-hahn-banach-theorem-is-needed-for-the-following-theorem%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2














              No, we cannot, because that map is not a linear map.






              share|cite|improve this answer


























                2














                No, we cannot, because that map is not a linear map.






                share|cite|improve this answer
























                  2












                  2








                  2






                  No, we cannot, because that map is not a linear map.






                  share|cite|improve this answer












                  No, we cannot, because that map is not a linear map.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 3 '18 at 14:40









                  José Carlos SantosJosé Carlos Santos

                  152k22123226




                  152k22123226























                      2














                      $f(x)=|x|$ is not linear!



                      There is no guarantee that $f(x+y) = |x+y|$ is equal to $f(x)+f(y) = |x|+|y|$.



                      In fact this is almost never happens.






                      share|cite|improve this answer


























                        2














                        $f(x)=|x|$ is not linear!



                        There is no guarantee that $f(x+y) = |x+y|$ is equal to $f(x)+f(y) = |x|+|y|$.



                        In fact this is almost never happens.






                        share|cite|improve this answer
























                          2












                          2








                          2






                          $f(x)=|x|$ is not linear!



                          There is no guarantee that $f(x+y) = |x+y|$ is equal to $f(x)+f(y) = |x|+|y|$.



                          In fact this is almost never happens.






                          share|cite|improve this answer












                          $f(x)=|x|$ is not linear!



                          There is no guarantee that $f(x+y) = |x+y|$ is equal to $f(x)+f(y) = |x|+|y|$.



                          In fact this is almost never happens.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 3 '18 at 14:41









                          YankoYanko

                          6,469727




                          6,469727






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024137%2fwhy-hahn-banach-theorem-is-needed-for-the-following-theorem%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen