Evaluate $int_{0}^{frac{pi}{4}} ln(sec x)dx$
$begingroup$
Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$
My try: I tried using its complimentary integral:
Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$
Adding both we get:
$$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$
$$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$
$$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$
$$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$
Using the substitution $2x=t$ we get
$$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$
Using the formula:
$$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get
$$2P+2Q=pi ln 2$$
$$P+Q=frac{pi}{2}ln 2$$
Is there any way to find $P-Q$
algebra-precalculus definite-integrals logarithms
$endgroup$
add a comment |
$begingroup$
Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$
My try: I tried using its complimentary integral:
Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$
Adding both we get:
$$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$
$$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$
$$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$
$$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$
Using the substitution $2x=t$ we get
$$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$
Using the formula:
$$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get
$$2P+2Q=pi ln 2$$
$$P+Q=frac{pi}{2}ln 2$$
Is there any way to find $P-Q$
algebra-precalculus definite-integrals logarithms
$endgroup$
add a comment |
$begingroup$
Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$
My try: I tried using its complimentary integral:
Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$
Adding both we get:
$$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$
$$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$
$$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$
$$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$
Using the substitution $2x=t$ we get
$$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$
Using the formula:
$$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get
$$2P+2Q=pi ln 2$$
$$P+Q=frac{pi}{2}ln 2$$
Is there any way to find $P-Q$
algebra-precalculus definite-integrals logarithms
$endgroup$
Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$
My try: I tried using its complimentary integral:
Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$
Adding both we get:
$$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$
$$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$
$$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$
$$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$
Using the substitution $2x=t$ we get
$$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$
Using the formula:
$$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get
$$2P+2Q=pi ln 2$$
$$P+Q=frac{pi}{2}ln 2$$
Is there any way to find $P-Q$
algebra-precalculus definite-integrals logarithms
algebra-precalculus definite-integrals logarithms
asked Dec 11 '18 at 17:53
Umesh shankarUmesh shankar
2,68031219
2,68031219
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
In fact
begin{eqnarray*}
P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
&=&int_0^1frac{ln u}{1+u^2}du\
&=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
&=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
&=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
&=&-C
end{eqnarray*}
where $C$ is the Catalan constant.
$endgroup$
add a comment |
$begingroup$
Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is
$$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$
Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035569%2fevaluate-int-0-frac-pi4-ln-sec-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In fact
begin{eqnarray*}
P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
&=&int_0^1frac{ln u}{1+u^2}du\
&=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
&=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
&=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
&=&-C
end{eqnarray*}
where $C$ is the Catalan constant.
$endgroup$
add a comment |
$begingroup$
In fact
begin{eqnarray*}
P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
&=&int_0^1frac{ln u}{1+u^2}du\
&=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
&=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
&=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
&=&-C
end{eqnarray*}
where $C$ is the Catalan constant.
$endgroup$
add a comment |
$begingroup$
In fact
begin{eqnarray*}
P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
&=&int_0^1frac{ln u}{1+u^2}du\
&=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
&=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
&=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
&=&-C
end{eqnarray*}
where $C$ is the Catalan constant.
$endgroup$
In fact
begin{eqnarray*}
P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
&=&int_0^1frac{ln u}{1+u^2}du\
&=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
&=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
&=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
&=&-C
end{eqnarray*}
where $C$ is the Catalan constant.
answered Dec 11 '18 at 18:04
xpaulxpaul
22.7k24455
22.7k24455
add a comment |
add a comment |
$begingroup$
Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is
$$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$
Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.
$endgroup$
add a comment |
$begingroup$
Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is
$$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$
Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.
$endgroup$
add a comment |
$begingroup$
Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is
$$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$
Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.
$endgroup$
Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is
$$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$
Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.
answered Dec 11 '18 at 18:36
Frank W.Frank W.
3,5331321
3,5331321
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035569%2fevaluate-int-0-frac-pi4-ln-sec-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown