Evaluate $int_{0}^{frac{pi}{4}} ln(sec x)dx$












2












$begingroup$


Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$



My try: I tried using its complimentary integral:



Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$



Adding both we get:



$$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$



$$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$



$$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$



$$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$



Using the substitution $2x=t$ we get



$$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$



Using the formula:



$$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get



$$2P+2Q=pi ln 2$$



$$P+Q=frac{pi}{2}ln 2$$



Is there any way to find $P-Q$










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$



    My try: I tried using its complimentary integral:



    Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$



    Adding both we get:



    $$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$



    $$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$



    $$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$



    $$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$



    Using the substitution $2x=t$ we get



    $$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$



    Using the formula:



    $$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get



    $$2P+2Q=pi ln 2$$



    $$P+Q=frac{pi}{2}ln 2$$



    Is there any way to find $P-Q$










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$



      My try: I tried using its complimentary integral:



      Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$



      Adding both we get:



      $$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$



      $$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$



      $$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$



      $$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$



      Using the substitution $2x=t$ we get



      $$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$



      Using the formula:



      $$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get



      $$2P+2Q=pi ln 2$$



      $$P+Q=frac{pi}{2}ln 2$$



      Is there any way to find $P-Q$










      share|cite|improve this question









      $endgroup$




      Evaluate $$P=int_{0}^{frac{pi}{4}} ln(sec x)dx$$



      My try: I tried using its complimentary integral:



      Let $$Q=int_{0}^{frac{pi}{4}} ln(csc x)dx$$



      Adding both we get:



      $$P+Q=int_{0}^{frac{pi}{4}}ln(sec xcsc x)dx$$ $implies$



      $$2P+2Q=int_{0}^{frac{pi}{4}}ln(sec^2 xcsc^2 x)dx=int_{0}^{frac{pi}{4}}lnleft(frac{4}{4sin^2 xcos^2 x}right)dx$$ $implies$



      $$2P+2Q=frac{pi}{4}ln 4-int_{0}^{frac{pi}{4}}lnleft(sin^2 2xright)dx$$



      $$2P+2Q=frac{pi}{2}ln 2-2 int_{0}^{frac{pi}{4}}ln(sin 2x)dx$$



      Using the substitution $2x=t$ we get



      $$2P+2Q=frac{pi}{2}ln 2- int_{0}^{frac{pi}{2}}ln(sin t)dt$$



      Using the formula:



      $$int_{0}^{frac{pi}{2}}ln(sin t)dt=frac{-pi}{2}ln 2$$ we get



      $$2P+2Q=pi ln 2$$



      $$P+Q=frac{pi}{2}ln 2$$



      Is there any way to find $P-Q$







      algebra-precalculus definite-integrals logarithms






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 11 '18 at 17:53









      Umesh shankarUmesh shankar

      2,68031219




      2,68031219






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          In fact
          begin{eqnarray*}
          P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
          &=&int_0^1frac{ln u}{1+u^2}du\
          &=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
          &=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
          &=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
          &=&-C
          end{eqnarray*}

          where $C$ is the Catalan constant.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is




            $$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$




            Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035569%2fevaluate-int-0-frac-pi4-ln-sec-xdx%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              In fact
              begin{eqnarray*}
              P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
              &=&int_0^1frac{ln u}{1+u^2}du\
              &=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
              &=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
              &=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
              &=&-C
              end{eqnarray*}

              where $C$ is the Catalan constant.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                In fact
                begin{eqnarray*}
                P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
                &=&int_0^1frac{ln u}{1+u^2}du\
                &=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
                &=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
                &=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
                &=&-C
                end{eqnarray*}

                where $C$ is the Catalan constant.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  In fact
                  begin{eqnarray*}
                  P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
                  &=&int_0^1frac{ln u}{1+u^2}du\
                  &=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
                  &=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
                  &=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
                  &=&-C
                  end{eqnarray*}

                  where $C$ is the Catalan constant.






                  share|cite|improve this answer









                  $endgroup$



                  In fact
                  begin{eqnarray*}
                  P-Q&=&int_0^{frac{pi}{4}}ln(tan t)dt\
                  &=&int_0^1frac{ln u}{1+u^2}du\
                  &=&int_0^1ln usum_{n=0}^infty(-1)^nu^{2n}du\
                  &=&sum_{n=0}^infty(-1)^nint_0^1u^{2n}ln udu\
                  &=&-sum_{n=0}^infty(-1)^nfrac{1}{(2n+1)^2}\
                  &=&-C
                  end{eqnarray*}

                  where $C$ is the Catalan constant.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 11 '18 at 18:04









                  xpaulxpaul

                  22.7k24455




                  22.7k24455























                      2












                      $begingroup$

                      Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is




                      $$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$




                      Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is




                        $$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$




                        Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is




                          $$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$




                          Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.






                          share|cite|improve this answer









                          $endgroup$



                          Through the properties of the logarithm, the integral can be rewritten as$$mathfrak{I}=-intlimits_0^{pi/4}mathrm dx,logcos x$$Now use the Fourier expansion for $logcos x$ which is




                          $$logcos x=sumlimits_{ngeq1}frac {(-1)^{n-1}cos 2nx}{n}-log 2$$




                          Now integrate each time termwise to get that$$begin{align*}mathfrak{I} & =frac {pi}4log 2+sumlimits_{ngeq1}frac {(-1)^n}{n}intlimits_0^{pi/4}mathrm dx,cos 2nx\ & =frac {pi}4log 2+frac 12sumlimits_{ngeq1}frac {(-1)^n}{n^2}sinleft(frac {pi n}2right)\ & =frac {pi}4log 2-frac 12Gend{align*}$$where $G$ is Catalan’s constant.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 11 '18 at 18:36









                          Frank W.Frank W.

                          3,5331321




                          3,5331321






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035569%2fevaluate-int-0-frac-pi4-ln-sec-xdx%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen