Find the streamline equation of a velocity field
$begingroup$
Assume the velocity field:
$$
v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
$$
$$
v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
$$
The streamline equation is the solution of the differential equation:
$$
ds=frac{dx}{v_x}=frac{dy}{v_y}
$$
$$
iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
$$
$$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
$$
indefinite integration and adjusting of the constant gives:
$$
left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
$$
$$
iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
$$
Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?
ordinary-differential-equations fluid-dynamics
$endgroup$
add a comment |
$begingroup$
Assume the velocity field:
$$
v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
$$
$$
v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
$$
The streamline equation is the solution of the differential equation:
$$
ds=frac{dx}{v_x}=frac{dy}{v_y}
$$
$$
iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
$$
$$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
$$
indefinite integration and adjusting of the constant gives:
$$
left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
$$
$$
iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
$$
Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?
ordinary-differential-equations fluid-dynamics
$endgroup$
add a comment |
$begingroup$
Assume the velocity field:
$$
v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
$$
$$
v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
$$
The streamline equation is the solution of the differential equation:
$$
ds=frac{dx}{v_x}=frac{dy}{v_y}
$$
$$
iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
$$
$$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
$$
indefinite integration and adjusting of the constant gives:
$$
left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
$$
$$
iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
$$
Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?
ordinary-differential-equations fluid-dynamics
$endgroup$
Assume the velocity field:
$$
v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
$$
$$
v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
$$
The streamline equation is the solution of the differential equation:
$$
ds=frac{dx}{v_x}=frac{dy}{v_y}
$$
$$
iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
$$
$$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
$$
indefinite integration and adjusting of the constant gives:
$$
left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
$$
$$
iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
$$
Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?
ordinary-differential-equations fluid-dynamics
ordinary-differential-equations fluid-dynamics
edited Dec 12 '18 at 11:30
Jevaut
asked Dec 11 '18 at 18:13
JevautJevaut
1,151112
1,151112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes
begin{equation}
int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
end{equation}
which gives
begin{equation}
- frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
end{equation}
or
begin{equation}
lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
end{equation}
Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is
begin{equation}
f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
end{equation}
$endgroup$
$begingroup$
Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
$endgroup$
– Jevaut
Dec 12 '18 at 11:29
$begingroup$
You are right, I'll edit the answer with squares to be similar to your derivation.
$endgroup$
– Sia
Dec 12 '18 at 20:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035600%2ffind-the-streamline-equation-of-a-velocity-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes
begin{equation}
int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
end{equation}
which gives
begin{equation}
- frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
end{equation}
or
begin{equation}
lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
end{equation}
Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is
begin{equation}
f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
end{equation}
$endgroup$
$begingroup$
Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
$endgroup$
– Jevaut
Dec 12 '18 at 11:29
$begingroup$
You are right, I'll edit the answer with squares to be similar to your derivation.
$endgroup$
– Sia
Dec 12 '18 at 20:22
add a comment |
$begingroup$
You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes
begin{equation}
int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
end{equation}
which gives
begin{equation}
- frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
end{equation}
or
begin{equation}
lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
end{equation}
Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is
begin{equation}
f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
end{equation}
$endgroup$
$begingroup$
Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
$endgroup$
– Jevaut
Dec 12 '18 at 11:29
$begingroup$
You are right, I'll edit the answer with squares to be similar to your derivation.
$endgroup$
– Sia
Dec 12 '18 at 20:22
add a comment |
$begingroup$
You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes
begin{equation}
int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
end{equation}
which gives
begin{equation}
- frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
end{equation}
or
begin{equation}
lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
end{equation}
Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is
begin{equation}
f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
end{equation}
$endgroup$
You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes
begin{equation}
int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
end{equation}
which gives
begin{equation}
- frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
end{equation}
or
begin{equation}
lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
end{equation}
Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is
begin{equation}
f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
end{equation}
edited Dec 13 '18 at 1:47
answered Dec 11 '18 at 21:35
SiaSia
1064
1064
$begingroup$
Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
$endgroup$
– Jevaut
Dec 12 '18 at 11:29
$begingroup$
You are right, I'll edit the answer with squares to be similar to your derivation.
$endgroup$
– Sia
Dec 12 '18 at 20:22
add a comment |
$begingroup$
Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
$endgroup$
– Jevaut
Dec 12 '18 at 11:29
$begingroup$
You are right, I'll edit the answer with squares to be similar to your derivation.
$endgroup$
– Sia
Dec 12 '18 at 20:22
$begingroup$
Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
$endgroup$
– Jevaut
Dec 12 '18 at 11:29
$begingroup$
Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
$endgroup$
– Jevaut
Dec 12 '18 at 11:29
$begingroup$
You are right, I'll edit the answer with squares to be similar to your derivation.
$endgroup$
– Sia
Dec 12 '18 at 20:22
$begingroup$
You are right, I'll edit the answer with squares to be similar to your derivation.
$endgroup$
– Sia
Dec 12 '18 at 20:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035600%2ffind-the-streamline-equation-of-a-velocity-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown