Find the streamline equation of a velocity field












0












$begingroup$


Assume the velocity field:
$$
v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
$$

$$
v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
$$



The streamline equation is the solution of the differential equation:
$$
ds=frac{dx}{v_x}=frac{dy}{v_y}
$$

$$
iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
$$

$$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
$$



indefinite integration and adjusting of the constant gives:
$$
left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
$$

$$
iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
$$



Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Assume the velocity field:
    $$
    v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
    $$

    $$
    v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
    $$



    The streamline equation is the solution of the differential equation:
    $$
    ds=frac{dx}{v_x}=frac{dy}{v_y}
    $$

    $$
    iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
    $$

    $$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
    $$



    indefinite integration and adjusting of the constant gives:
    $$
    left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
    $$

    $$
    iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
    $$



    Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Assume the velocity field:
      $$
      v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
      $$

      $$
      v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
      $$



      The streamline equation is the solution of the differential equation:
      $$
      ds=frac{dx}{v_x}=frac{dy}{v_y}
      $$

      $$
      iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
      $$

      $$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
      $$



      indefinite integration and adjusting of the constant gives:
      $$
      left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
      $$

      $$
      iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
      $$



      Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?










      share|cite|improve this question











      $endgroup$




      Assume the velocity field:
      $$
      v_x=-Ue^{-at}cos left( frac{pi x}{L} right)sin left( frac{pi y}{L} right)
      $$

      $$
      v_y=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)
      $$



      The streamline equation is the solution of the differential equation:
      $$
      ds=frac{dx}{v_x}=frac{dy}{v_y}
      $$

      $$
      iff -Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right) dx=-Ue^{-at}sin left( frac{pi x}{L} right)cos left( frac{pi y}{L} right)dy
      $$

      $$ Rightarrow tan left( frac{pi x}{L} right)dx=tan left( frac{pi y}{L} right)dy
      $$



      indefinite integration and adjusting of the constant gives:
      $$
      left| cos left( frac{pi x}{L} right)right|=c cdot left|cos left( frac{pi y}{L} right)right|
      $$

      $$
      iff cos^2 left( frac{pi x}{L} right)+lambda cdot cos^2 left( frac{pi y}{L} right)=0
      $$



      Given that we are given no initial point $(x_0,y_0)$ to determine $c$, how can a final result be obtained?







      ordinary-differential-equations fluid-dynamics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 12 '18 at 11:30







      Jevaut

















      asked Dec 11 '18 at 18:13









      JevautJevaut

      1,151112




      1,151112






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes



          begin{equation}
          int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
          end{equation}



          which gives



          begin{equation}
          - frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
          end{equation}



          or



          begin{equation}
          lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
          end{equation}



          Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is



          begin{equation}
          f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
          end{equation}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
            $endgroup$
            – Jevaut
            Dec 12 '18 at 11:29










          • $begingroup$
            You are right, I'll edit the answer with squares to be similar to your derivation.
            $endgroup$
            – Sia
            Dec 12 '18 at 20:22











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035600%2ffind-the-streamline-equation-of-a-velocity-field%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes



          begin{equation}
          int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
          end{equation}



          which gives



          begin{equation}
          - frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
          end{equation}



          or



          begin{equation}
          lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
          end{equation}



          Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is



          begin{equation}
          f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
          end{equation}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
            $endgroup$
            – Jevaut
            Dec 12 '18 at 11:29










          • $begingroup$
            You are right, I'll edit the answer with squares to be similar to your derivation.
            $endgroup$
            – Sia
            Dec 12 '18 at 20:22
















          2












          $begingroup$

          You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes



          begin{equation}
          int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
          end{equation}



          which gives



          begin{equation}
          - frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
          end{equation}



          or



          begin{equation}
          lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
          end{equation}



          Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is



          begin{equation}
          f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
          end{equation}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
            $endgroup$
            – Jevaut
            Dec 12 '18 at 11:29










          • $begingroup$
            You are right, I'll edit the answer with squares to be similar to your derivation.
            $endgroup$
            – Sia
            Dec 12 '18 at 20:22














          2












          2








          2





          $begingroup$

          You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes



          begin{equation}
          int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
          end{equation}



          which gives



          begin{equation}
          - frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
          end{equation}



          or



          begin{equation}
          lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
          end{equation}



          Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is



          begin{equation}
          f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
          end{equation}






          share|cite|improve this answer











          $endgroup$



          You should assume a point on streamline is given which then will be treated a paramter $(x_0,y_0)$ in your equation. Take definite integral from a given point $(x_0,y_0)$ where the streamline passes through, to some arbitrary point $(x,y)$. The integral equation becomes



          begin{equation}
          int_{x_0}^x tan left( frac{pi x}{L} right) mathrm{d} x = int_{y_0}^y tan left( frac{pi y}{L} right) mathrm{d} y
          end{equation}



          which gives



          begin{equation}
          - frac{L}{pi} left[ ln left| cos( frac{pi x}{L} ) right| right]_{x_0}^x = - frac{L}{pi} left[ ln left| cos( frac{pi y}{L} ) right| right]_{y_0}^y
          end{equation}



          or



          begin{equation}
          lnleft| frac{cos( frac{pi x}{L} )}{cos( frac{pi x_0}{L} )} right| = lnleft| frac{cos( frac{pi y}{L} )}{cos( frac{pi y_0}{L} )} right|
          end{equation}



          Thus the streamline curve $f(x,y) = 0$ that passes through a given point $(x_0,y_0)$ is



          begin{equation}
          f(x,y) = left( frac{ cos( frac{pi x}{L} )}{ cos( frac{pi y}{L} )} right)^2 - underbrace{ left( frac{cos( frac{pi x_0}{L} ) }{cos( frac{pi y_0}{L} )}right)^2}_{c^2} = 0.
          end{equation}







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 13 '18 at 1:47

























          answered Dec 11 '18 at 21:35









          SiaSia

          1064




          1064












          • $begingroup$
            Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
            $endgroup$
            – Jevaut
            Dec 12 '18 at 11:29










          • $begingroup$
            You are right, I'll edit the answer with squares to be similar to your derivation.
            $endgroup$
            – Sia
            Dec 12 '18 at 20:22


















          • $begingroup$
            Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
            $endgroup$
            – Jevaut
            Dec 12 '18 at 11:29










          • $begingroup$
            You are right, I'll edit the answer with squares to be similar to your derivation.
            $endgroup$
            – Sia
            Dec 12 '18 at 20:22
















          $begingroup$
          Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
          $endgroup$
          – Jevaut
          Dec 12 '18 at 11:29




          $begingroup$
          Isn't it more appropriate to square the absolutes (just to get rid of the cases)?
          $endgroup$
          – Jevaut
          Dec 12 '18 at 11:29












          $begingroup$
          You are right, I'll edit the answer with squares to be similar to your derivation.
          $endgroup$
          – Sia
          Dec 12 '18 at 20:22




          $begingroup$
          You are right, I'll edit the answer with squares to be similar to your derivation.
          $endgroup$
          – Sia
          Dec 12 '18 at 20:22


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035600%2ffind-the-streamline-equation-of-a-velocity-field%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          To store a contact into the json file from server.js file using a class in NodeJS

          Redirect URL with Chrome Remote Debugging Android Devices

          Dieringhausen