Find the Arc length of the parametric curve












1












$begingroup$


$$x=6t-6sint$$
$$y=6-6cost$$
Find the arc length of the parametric curve
$$Arc length = int_{0}^{2pi} sqrt{(6-6cost)^2+(6sint)^2}dt\
=int_{0}^{2pi} sqrt{36-72cost+36cos^2t+36sin^2t}dt \
=int_{0}^{2pi} 6 sqrt{1-2cost+cos^2t+sin^2t}dt\
=int_{0}^{2pi} 6sqrt{2-2cost}dt\
=int_{0}^{2pi} 6sqrt{2}sqrt{1-cost}dt\
= 6sqrt{2}int_{0}^{2pi}sqrt{1-cost}dt\
=6sqrt{2}int_{0}^{2pi}sqrt{1-cost}frac{sqrt{(1+cost)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sqrt{(1-cos^2t)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sint}{sqrt{(1+cost)}} dt\$$

Let $$u =1+cost$$ $$du=-sint$$
$$=-6sqrt{2}int_{0}^{2pi}frac{1}{sqrt{u}}\
=-12sqrt{2}[u^frac{1}{2}]\
=0$$

But the answer is 48.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    the arc length is $ds^2=dx^2+dy^2=(x'^2+y'^2)dt^2$ : the derivatives and not the functions themselves
    $endgroup$
    – G Cab
    Dec 15 '18 at 16:47
















1












$begingroup$


$$x=6t-6sint$$
$$y=6-6cost$$
Find the arc length of the parametric curve
$$Arc length = int_{0}^{2pi} sqrt{(6-6cost)^2+(6sint)^2}dt\
=int_{0}^{2pi} sqrt{36-72cost+36cos^2t+36sin^2t}dt \
=int_{0}^{2pi} 6 sqrt{1-2cost+cos^2t+sin^2t}dt\
=int_{0}^{2pi} 6sqrt{2-2cost}dt\
=int_{0}^{2pi} 6sqrt{2}sqrt{1-cost}dt\
= 6sqrt{2}int_{0}^{2pi}sqrt{1-cost}dt\
=6sqrt{2}int_{0}^{2pi}sqrt{1-cost}frac{sqrt{(1+cost)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sqrt{(1-cos^2t)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sint}{sqrt{(1+cost)}} dt\$$

Let $$u =1+cost$$ $$du=-sint$$
$$=-6sqrt{2}int_{0}^{2pi}frac{1}{sqrt{u}}\
=-12sqrt{2}[u^frac{1}{2}]\
=0$$

But the answer is 48.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    the arc length is $ds^2=dx^2+dy^2=(x'^2+y'^2)dt^2$ : the derivatives and not the functions themselves
    $endgroup$
    – G Cab
    Dec 15 '18 at 16:47














1












1








1





$begingroup$


$$x=6t-6sint$$
$$y=6-6cost$$
Find the arc length of the parametric curve
$$Arc length = int_{0}^{2pi} sqrt{(6-6cost)^2+(6sint)^2}dt\
=int_{0}^{2pi} sqrt{36-72cost+36cos^2t+36sin^2t}dt \
=int_{0}^{2pi} 6 sqrt{1-2cost+cos^2t+sin^2t}dt\
=int_{0}^{2pi} 6sqrt{2-2cost}dt\
=int_{0}^{2pi} 6sqrt{2}sqrt{1-cost}dt\
= 6sqrt{2}int_{0}^{2pi}sqrt{1-cost}dt\
=6sqrt{2}int_{0}^{2pi}sqrt{1-cost}frac{sqrt{(1+cost)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sqrt{(1-cos^2t)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sint}{sqrt{(1+cost)}} dt\$$

Let $$u =1+cost$$ $$du=-sint$$
$$=-6sqrt{2}int_{0}^{2pi}frac{1}{sqrt{u}}\
=-12sqrt{2}[u^frac{1}{2}]\
=0$$

But the answer is 48.










share|cite|improve this question











$endgroup$




$$x=6t-6sint$$
$$y=6-6cost$$
Find the arc length of the parametric curve
$$Arc length = int_{0}^{2pi} sqrt{(6-6cost)^2+(6sint)^2}dt\
=int_{0}^{2pi} sqrt{36-72cost+36cos^2t+36sin^2t}dt \
=int_{0}^{2pi} 6 sqrt{1-2cost+cos^2t+sin^2t}dt\
=int_{0}^{2pi} 6sqrt{2-2cost}dt\
=int_{0}^{2pi} 6sqrt{2}sqrt{1-cost}dt\
= 6sqrt{2}int_{0}^{2pi}sqrt{1-cost}dt\
=6sqrt{2}int_{0}^{2pi}sqrt{1-cost}frac{sqrt{(1+cost)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sqrt{(1-cos^2t)}}{sqrt{(1+cost)}} dt\
=6sqrt{2}int_{0}^{2pi}frac{sint}{sqrt{(1+cost)}} dt\$$

Let $$u =1+cost$$ $$du=-sint$$
$$=-6sqrt{2}int_{0}^{2pi}frac{1}{sqrt{u}}\
=-12sqrt{2}[u^frac{1}{2}]\
=0$$

But the answer is 48.







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 15 '18 at 16:49







Evian

















asked Dec 15 '18 at 16:41









EvianEvian

84




84








  • 1




    $begingroup$
    the arc length is $ds^2=dx^2+dy^2=(x'^2+y'^2)dt^2$ : the derivatives and not the functions themselves
    $endgroup$
    – G Cab
    Dec 15 '18 at 16:47














  • 1




    $begingroup$
    the arc length is $ds^2=dx^2+dy^2=(x'^2+y'^2)dt^2$ : the derivatives and not the functions themselves
    $endgroup$
    – G Cab
    Dec 15 '18 at 16:47








1




1




$begingroup$
the arc length is $ds^2=dx^2+dy^2=(x'^2+y'^2)dt^2$ : the derivatives and not the functions themselves
$endgroup$
– G Cab
Dec 15 '18 at 16:47




$begingroup$
the arc length is $ds^2=dx^2+dy^2=(x'^2+y'^2)dt^2$ : the derivatives and not the functions themselves
$endgroup$
– G Cab
Dec 15 '18 at 16:47










1 Answer
1






active

oldest

votes


















0












$begingroup$

Leaving the coefficient $6$ on the side, we have



$$s=int_0^{2pi}sqrt{(1-cos t)^2+(sin t)^2},dt=int_0^{2pi}sqrt{2-2cos t},dt=2int_0^{2pi}left|sinfrac t2right|,dt.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041693%2ffind-the-arc-length-of-the-parametric-curve%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Leaving the coefficient $6$ on the side, we have



    $$s=int_0^{2pi}sqrt{(1-cos t)^2+(sin t)^2},dt=int_0^{2pi}sqrt{2-2cos t},dt=2int_0^{2pi}left|sinfrac t2right|,dt.$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Leaving the coefficient $6$ on the side, we have



      $$s=int_0^{2pi}sqrt{(1-cos t)^2+(sin t)^2},dt=int_0^{2pi}sqrt{2-2cos t},dt=2int_0^{2pi}left|sinfrac t2right|,dt.$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Leaving the coefficient $6$ on the side, we have



        $$s=int_0^{2pi}sqrt{(1-cos t)^2+(sin t)^2},dt=int_0^{2pi}sqrt{2-2cos t},dt=2int_0^{2pi}left|sinfrac t2right|,dt.$$






        share|cite|improve this answer









        $endgroup$



        Leaving the coefficient $6$ on the side, we have



        $$s=int_0^{2pi}sqrt{(1-cos t)^2+(sin t)^2},dt=int_0^{2pi}sqrt{2-2cos t},dt=2int_0^{2pi}left|sinfrac t2right|,dt.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 15 '18 at 16:54









        Yves DaoustYves Daoust

        128k673226




        128k673226






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041693%2ffind-the-arc-length-of-the-parametric-curve%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen