Coordinates of a vector FFT












1












$begingroup$


I was reading a paper about DFT, at the end he got the relations $Y=frac{1}{sqrt N}W_n cdot y$ and $y=frac{1}{sqrt N}W_n cdot Y$, where $y$ is a vector and $Y$ is the coordinates of that vector in the basis. $W_n$ stands for the transformation matrix.
Later, the author shows how to reduce the following into smaller matrices but I don't really understand what is he doing nor how is he doing it.



begin{align*}
W_4 begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix} &= begin{bmatrix}
begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
begin{bmatrix} y_0\y_2 end{bmatrix}
+begin{bmatrix} 1&1\omega&omega^3 end{bmatrix}
begin{bmatrix} y_1\y_3 end{bmatrix}
\
begin{bmatrix} 1&omega^4\1&omega^6 end{bmatrix}
begin{bmatrix} y_0\y_2 end{bmatrix}
+begin{bmatrix} omega^2&omega^6\omega^3&omega^9 end{bmatrix}
begin{bmatrix} y_1\y_3 end{bmatrix}
end{bmatrix}
\ &=
begin{bmatrix}
begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
begin{bmatrix} y_0\y_2 end{bmatrix}
+begin{bmatrix} 1\&omega end{bmatrix}
begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
begin{bmatrix} y_1\y_3 end{bmatrix}
\
begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
begin{bmatrix} y_0\y_2 end{bmatrix}
-begin{bmatrix} 1\&omega end{bmatrix}
begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
begin{bmatrix} y_1\y_3 end{bmatrix}
end{bmatrix}
end{align*}










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I was reading a paper about DFT, at the end he got the relations $Y=frac{1}{sqrt N}W_n cdot y$ and $y=frac{1}{sqrt N}W_n cdot Y$, where $y$ is a vector and $Y$ is the coordinates of that vector in the basis. $W_n$ stands for the transformation matrix.
    Later, the author shows how to reduce the following into smaller matrices but I don't really understand what is he doing nor how is he doing it.



    begin{align*}
    W_4 begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix} &= begin{bmatrix}
    begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
    begin{bmatrix} y_0\y_2 end{bmatrix}
    +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix}
    begin{bmatrix} y_1\y_3 end{bmatrix}
    \
    begin{bmatrix} 1&omega^4\1&omega^6 end{bmatrix}
    begin{bmatrix} y_0\y_2 end{bmatrix}
    +begin{bmatrix} omega^2&omega^6\omega^3&omega^9 end{bmatrix}
    begin{bmatrix} y_1\y_3 end{bmatrix}
    end{bmatrix}
    \ &=
    begin{bmatrix}
    begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
    begin{bmatrix} y_0\y_2 end{bmatrix}
    +begin{bmatrix} 1\&omega end{bmatrix}
    begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
    begin{bmatrix} y_1\y_3 end{bmatrix}
    \
    begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
    begin{bmatrix} y_0\y_2 end{bmatrix}
    -begin{bmatrix} 1\&omega end{bmatrix}
    begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
    begin{bmatrix} y_1\y_3 end{bmatrix}
    end{bmatrix}
    end{align*}










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I was reading a paper about DFT, at the end he got the relations $Y=frac{1}{sqrt N}W_n cdot y$ and $y=frac{1}{sqrt N}W_n cdot Y$, where $y$ is a vector and $Y$ is the coordinates of that vector in the basis. $W_n$ stands for the transformation matrix.
      Later, the author shows how to reduce the following into smaller matrices but I don't really understand what is he doing nor how is he doing it.



      begin{align*}
      W_4 begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix} &= begin{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      \
      begin{bmatrix} 1&omega^4\1&omega^6 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      +begin{bmatrix} omega^2&omega^6\omega^3&omega^9 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      end{bmatrix}
      \ &=
      begin{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      +begin{bmatrix} 1\&omega end{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      \
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      -begin{bmatrix} 1\&omega end{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      end{bmatrix}
      end{align*}










      share|cite|improve this question











      $endgroup$




      I was reading a paper about DFT, at the end he got the relations $Y=frac{1}{sqrt N}W_n cdot y$ and $y=frac{1}{sqrt N}W_n cdot Y$, where $y$ is a vector and $Y$ is the coordinates of that vector in the basis. $W_n$ stands for the transformation matrix.
      Later, the author shows how to reduce the following into smaller matrices but I don't really understand what is he doing nor how is he doing it.



      begin{align*}
      W_4 begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix} &= begin{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      \
      begin{bmatrix} 1&omega^4\1&omega^6 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      +begin{bmatrix} omega^2&omega^6\omega^3&omega^9 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      end{bmatrix}
      \ &=
      begin{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      +begin{bmatrix} 1\&omega end{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      \
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_0\y_2 end{bmatrix}
      -begin{bmatrix} 1\&omega end{bmatrix}
      begin{bmatrix} 1&1\1&omega^2 end{bmatrix}
      begin{bmatrix} y_1\y_3 end{bmatrix}
      end{bmatrix}
      end{align*}







      fast-fourier-transform






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 26 '18 at 1:02









      Rócherz

      2,9112821




      2,9112821










      asked Dec 25 '18 at 20:38









      Alejandro DuqueAlejandro Duque

      62




      62






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          In the first step, the author is just exploiting some associativity of the matrix-vector product. For instance, the first two rows of $W_4y$ are:
          begin{align*}
          begin{bmatrix} 1&1&1&1\ 1&omega&omega^2&omega^3 end{bmatrix} begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix}
          &=
          begin{bmatrix} y_0+y_1+y_2+y_3\ y_0+omega y_1+omega^2y_2+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} (y_0+y_2)+(y_1+y_3)\ (y_0+omega^2y_2)+(omega y_1+omega^3y_3) end{bmatrix}
          \ &=
          begin{bmatrix} y_0+y_2\ y_0+omega^2y_2 end{bmatrix}
          +
          begin{bmatrix} y_1+y_3\ omega y_1+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} 1&1\1&omega^2 end{bmatrix} begin{bmatrix} y_0\y_2 end{bmatrix} +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix} begin{bmatrix} y_1\y_3 end{bmatrix}.
          end{align*}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh ok, now i get it thanks. i will continue by myself from here
            $endgroup$
            – Alejandro Duque
            Dec 25 '18 at 21:30











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052412%2fcoordinates-of-a-vector-fft%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          In the first step, the author is just exploiting some associativity of the matrix-vector product. For instance, the first two rows of $W_4y$ are:
          begin{align*}
          begin{bmatrix} 1&1&1&1\ 1&omega&omega^2&omega^3 end{bmatrix} begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix}
          &=
          begin{bmatrix} y_0+y_1+y_2+y_3\ y_0+omega y_1+omega^2y_2+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} (y_0+y_2)+(y_1+y_3)\ (y_0+omega^2y_2)+(omega y_1+omega^3y_3) end{bmatrix}
          \ &=
          begin{bmatrix} y_0+y_2\ y_0+omega^2y_2 end{bmatrix}
          +
          begin{bmatrix} y_1+y_3\ omega y_1+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} 1&1\1&omega^2 end{bmatrix} begin{bmatrix} y_0\y_2 end{bmatrix} +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix} begin{bmatrix} y_1\y_3 end{bmatrix}.
          end{align*}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh ok, now i get it thanks. i will continue by myself from here
            $endgroup$
            – Alejandro Duque
            Dec 25 '18 at 21:30
















          1












          $begingroup$

          In the first step, the author is just exploiting some associativity of the matrix-vector product. For instance, the first two rows of $W_4y$ are:
          begin{align*}
          begin{bmatrix} 1&1&1&1\ 1&omega&omega^2&omega^3 end{bmatrix} begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix}
          &=
          begin{bmatrix} y_0+y_1+y_2+y_3\ y_0+omega y_1+omega^2y_2+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} (y_0+y_2)+(y_1+y_3)\ (y_0+omega^2y_2)+(omega y_1+omega^3y_3) end{bmatrix}
          \ &=
          begin{bmatrix} y_0+y_2\ y_0+omega^2y_2 end{bmatrix}
          +
          begin{bmatrix} y_1+y_3\ omega y_1+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} 1&1\1&omega^2 end{bmatrix} begin{bmatrix} y_0\y_2 end{bmatrix} +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix} begin{bmatrix} y_1\y_3 end{bmatrix}.
          end{align*}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh ok, now i get it thanks. i will continue by myself from here
            $endgroup$
            – Alejandro Duque
            Dec 25 '18 at 21:30














          1












          1








          1





          $begingroup$

          In the first step, the author is just exploiting some associativity of the matrix-vector product. For instance, the first two rows of $W_4y$ are:
          begin{align*}
          begin{bmatrix} 1&1&1&1\ 1&omega&omega^2&omega^3 end{bmatrix} begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix}
          &=
          begin{bmatrix} y_0+y_1+y_2+y_3\ y_0+omega y_1+omega^2y_2+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} (y_0+y_2)+(y_1+y_3)\ (y_0+omega^2y_2)+(omega y_1+omega^3y_3) end{bmatrix}
          \ &=
          begin{bmatrix} y_0+y_2\ y_0+omega^2y_2 end{bmatrix}
          +
          begin{bmatrix} y_1+y_3\ omega y_1+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} 1&1\1&omega^2 end{bmatrix} begin{bmatrix} y_0\y_2 end{bmatrix} +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix} begin{bmatrix} y_1\y_3 end{bmatrix}.
          end{align*}






          share|cite|improve this answer











          $endgroup$



          In the first step, the author is just exploiting some associativity of the matrix-vector product. For instance, the first two rows of $W_4y$ are:
          begin{align*}
          begin{bmatrix} 1&1&1&1\ 1&omega&omega^2&omega^3 end{bmatrix} begin{bmatrix} y_0\y_1\y_2\y_3 end{bmatrix}
          &=
          begin{bmatrix} y_0+y_1+y_2+y_3\ y_0+omega y_1+omega^2y_2+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} (y_0+y_2)+(y_1+y_3)\ (y_0+omega^2y_2)+(omega y_1+omega^3y_3) end{bmatrix}
          \ &=
          begin{bmatrix} y_0+y_2\ y_0+omega^2y_2 end{bmatrix}
          +
          begin{bmatrix} y_1+y_3\ omega y_1+omega^3y_3 end{bmatrix}
          \ &=
          begin{bmatrix} 1&1\1&omega^2 end{bmatrix} begin{bmatrix} y_0\y_2 end{bmatrix} +begin{bmatrix} 1&1\omega&omega^3 end{bmatrix} begin{bmatrix} y_1\y_3 end{bmatrix}.
          end{align*}







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 25 '18 at 21:32

























          answered Dec 25 '18 at 21:01









          RócherzRócherz

          2,9112821




          2,9112821












          • $begingroup$
            Oh ok, now i get it thanks. i will continue by myself from here
            $endgroup$
            – Alejandro Duque
            Dec 25 '18 at 21:30


















          • $begingroup$
            Oh ok, now i get it thanks. i will continue by myself from here
            $endgroup$
            – Alejandro Duque
            Dec 25 '18 at 21:30
















          $begingroup$
          Oh ok, now i get it thanks. i will continue by myself from here
          $endgroup$
          – Alejandro Duque
          Dec 25 '18 at 21:30




          $begingroup$
          Oh ok, now i get it thanks. i will continue by myself from here
          $endgroup$
          – Alejandro Duque
          Dec 25 '18 at 21:30


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052412%2fcoordinates-of-a-vector-fft%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen