Prove Standard deviation greater than or equal to Mean deviation
$begingroup$
Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?
$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$
and under what conditions we get the equality ?
I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.
statistics standard-deviation
$endgroup$
add a comment |
$begingroup$
Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?
$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$
and under what conditions we get the equality ?
I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.
statistics standard-deviation
$endgroup$
3
$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18
$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41
add a comment |
$begingroup$
Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?
$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$
and under what conditions we get the equality ?
I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.
statistics standard-deviation
$endgroup$
Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?
$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$
and under what conditions we get the equality ?
I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.
statistics standard-deviation
statistics standard-deviation
edited Jul 20 '17 at 18:34
ss1729
asked Jul 20 '17 at 18:12
ss1729ss1729
2,00311024
2,00311024
3
$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18
$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41
add a comment |
3
$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18
$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41
3
3
$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18
$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18
$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41
$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
Then:
begin{align}
frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
&= frac{ left(vcdotvec{1}right)^2}{n^2}\
&leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
&= frac{1}{n}sum_i|x_i - bar{x}|^2
end{align}
where we used the CS inequality for the second step.
Now take the root of the first and last terms:
$$
sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
$$
$endgroup$
$begingroup$
How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
$endgroup$
– ThePassenger
Jul 21 '17 at 8:22
add a comment |
$begingroup$
The Cauchy Schwarz inequality
$$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
$$
taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,
$$
bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
S.Dge M.D
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2365301%2fprove-standard-deviation-greater-than-or-equal-to-mean-deviation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
Then:
begin{align}
frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
&= frac{ left(vcdotvec{1}right)^2}{n^2}\
&leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
&= frac{1}{n}sum_i|x_i - bar{x}|^2
end{align}
where we used the CS inequality for the second step.
Now take the root of the first and last terms:
$$
sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
$$
$endgroup$
$begingroup$
How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
$endgroup$
– ThePassenger
Jul 21 '17 at 8:22
add a comment |
$begingroup$
Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
Then:
begin{align}
frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
&= frac{ left(vcdotvec{1}right)^2}{n^2}\
&leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
&= frac{1}{n}sum_i|x_i - bar{x}|^2
end{align}
where we used the CS inequality for the second step.
Now take the root of the first and last terms:
$$
sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
$$
$endgroup$
$begingroup$
How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
$endgroup$
– ThePassenger
Jul 21 '17 at 8:22
add a comment |
$begingroup$
Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
Then:
begin{align}
frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
&= frac{ left(vcdotvec{1}right)^2}{n^2}\
&leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
&= frac{1}{n}sum_i|x_i - bar{x}|^2
end{align}
where we used the CS inequality for the second step.
Now take the root of the first and last terms:
$$
sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
$$
$endgroup$
Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
Then:
begin{align}
frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
&= frac{ left(vcdotvec{1}right)^2}{n^2}\
&leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
&= frac{1}{n}sum_i|x_i - bar{x}|^2
end{align}
where we used the CS inequality for the second step.
Now take the root of the first and last terms:
$$
sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
$$
answered Jul 20 '17 at 21:33
user3658307user3658307
4,8133946
4,8133946
$begingroup$
How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
$endgroup$
– ThePassenger
Jul 21 '17 at 8:22
add a comment |
$begingroup$
How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
$endgroup$
– ThePassenger
Jul 21 '17 at 8:22
$begingroup$
How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
$endgroup$
– ThePassenger
Jul 21 '17 at 8:22
$begingroup$
How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
$endgroup$
– ThePassenger
Jul 21 '17 at 8:22
add a comment |
$begingroup$
The Cauchy Schwarz inequality
$$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
$$
taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,
$$
bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
S.Dge M.D
$$
$endgroup$
add a comment |
$begingroup$
The Cauchy Schwarz inequality
$$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
$$
taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,
$$
bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
S.Dge M.D
$$
$endgroup$
add a comment |
$begingroup$
The Cauchy Schwarz inequality
$$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
$$
taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,
$$
bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
S.Dge M.D
$$
$endgroup$
The Cauchy Schwarz inequality
$$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
$$
taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,
$$
bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
S.Dge M.D
$$
edited Dec 25 '18 at 19:23
answered Jul 21 '17 at 10:27
ss1729ss1729
2,00311024
2,00311024
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2365301%2fprove-standard-deviation-greater-than-or-equal-to-mean-deviation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18
$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41