Prove Standard deviation greater than or equal to Mean deviation












1












$begingroup$


Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?




$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$




and under what conditions we get the equality ?



I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    The Cauchy–Schwarz inequality will do.
    $endgroup$
    – Chappers
    Jul 20 '17 at 18:18










  • $begingroup$
    @Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
    $endgroup$
    – ss1729
    Jul 20 '17 at 18:41


















1












$begingroup$


Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?




$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$




and under what conditions we get the equality ?



I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    The Cauchy–Schwarz inequality will do.
    $endgroup$
    – Chappers
    Jul 20 '17 at 18:18










  • $begingroup$
    @Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
    $endgroup$
    – ss1729
    Jul 20 '17 at 18:41
















1












1








1





$begingroup$


Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?




$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$




and under what conditions we get the equality ?



I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.










share|cite|improve this question











$endgroup$




Ho do we prove that the standard deviation is greater than or equal to the mean deviation about the arithmetic mean ?




$$
sqrtfrac{sum_{i=1}^{n}(x_i-bar{x})^2}{n}geqfrac{sum_{i=1}^{n}|x_i-bar{x}|}{n}
$$




and under what conditions we get the equality ?



I think i understand that it is because of the squaring in standard deviation which tends to give more weightage to the data far from the central tendency.







statistics standard-deviation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 20 '17 at 18:34







ss1729

















asked Jul 20 '17 at 18:12









ss1729ss1729

2,00311024




2,00311024








  • 3




    $begingroup$
    The Cauchy–Schwarz inequality will do.
    $endgroup$
    – Chappers
    Jul 20 '17 at 18:18










  • $begingroup$
    @Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
    $endgroup$
    – ss1729
    Jul 20 '17 at 18:41
















  • 3




    $begingroup$
    The Cauchy–Schwarz inequality will do.
    $endgroup$
    – Chappers
    Jul 20 '17 at 18:18










  • $begingroup$
    @Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
    $endgroup$
    – ss1729
    Jul 20 '17 at 18:41










3




3




$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18




$begingroup$
The Cauchy–Schwarz inequality will do.
$endgroup$
– Chappers
Jul 20 '17 at 18:18












$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41






$begingroup$
@Chappers could u help me how to proceed. i'm unable to find where to start inorder to prove it.
$endgroup$
– ss1729
Jul 20 '17 at 18:41












2 Answers
2






active

oldest

votes


















1












$begingroup$

Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
Then:
begin{align}
frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
&= frac{ left(vcdotvec{1}right)^2}{n^2}\
&leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
&= frac{1}{n}sum_i|x_i - bar{x}|^2
end{align}
where we used the CS inequality for the second step.
Now take the root of the first and last terms:
$$
sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
    $endgroup$
    – ThePassenger
    Jul 21 '17 at 8:22



















0












$begingroup$

The Cauchy Schwarz inequality




$$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
$$




taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,



$$
bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
S.Dge M.D
$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2365301%2fprove-standard-deviation-greater-than-or-equal-to-mean-deviation%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
    Then:
    begin{align}
    frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
    &= frac{ left(vcdotvec{1}right)^2}{n^2}\
    &leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
    &= frac{1}{n}sum_i|x_i - bar{x}|^2
    end{align}
    where we used the CS inequality for the second step.
    Now take the root of the first and last terms:
    $$
    sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
    $$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
      $endgroup$
      – ThePassenger
      Jul 21 '17 at 8:22
















    1












    $begingroup$

    Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
    Then:
    begin{align}
    frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
    &= frac{ left(vcdotvec{1}right)^2}{n^2}\
    &leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
    &= frac{1}{n}sum_i|x_i - bar{x}|^2
    end{align}
    where we used the CS inequality for the second step.
    Now take the root of the first and last terms:
    $$
    sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
    $$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
      $endgroup$
      – ThePassenger
      Jul 21 '17 at 8:22














    1












    1








    1





    $begingroup$

    Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
    Then:
    begin{align}
    frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
    &= frac{ left(vcdotvec{1}right)^2}{n^2}\
    &leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
    &= frac{1}{n}sum_i|x_i - bar{x}|^2
    end{align}
    where we used the CS inequality for the second step.
    Now take the root of the first and last terms:
    $$
    sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
    $$






    share|cite|improve this answer









    $endgroup$



    Let $v=left|vec{x} - bar{x}vec{1}right|$, where $|cdot|$ is component-wise.
    Then:
    begin{align}
    frac{1}{n^2}left( sum_i |x_i - bar{x}| right)^2
    &= frac{ left(vcdotvec{1}right)^2}{n^2}\
    &leq frac{(vec{1}cdotvec{1})(vcdot v)}{n^2}\
    &= frac{1}{n}sum_i|x_i - bar{x}|^2
    end{align}
    where we used the CS inequality for the second step.
    Now take the root of the first and last terms:
    $$
    sqrt{frac{1}{n}sum_i|x_i - bar{x}|^2;} ,geq frac{1}{n}sum_i |x_i - bar{x}|
    $$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jul 20 '17 at 21:33









    user3658307user3658307

    4,8133946




    4,8133946












    • $begingroup$
      How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
      $endgroup$
      – ThePassenger
      Jul 21 '17 at 8:22


















    • $begingroup$
      How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
      $endgroup$
      – ThePassenger
      Jul 21 '17 at 8:22
















    $begingroup$
    How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
    $endgroup$
    – ThePassenger
    Jul 21 '17 at 8:22




    $begingroup$
    How does $left|vec{x} - bar{x}vec{1}right|= sum_i left|x_i - bar{x} right|$ ?
    $endgroup$
    – ThePassenger
    Jul 21 '17 at 8:22











    0












    $begingroup$

    The Cauchy Schwarz inequality




    $$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
    $$




    taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,



    $$
    bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
    bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
    frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
    sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
    S.Dge M.D
    $$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      The Cauchy Schwarz inequality




      $$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
      $$




      taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,



      $$
      bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
      bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
      frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
      sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
      S.Dge M.D
      $$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        The Cauchy Schwarz inequality




        $$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
        $$




        taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,



        $$
        bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
        bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
        frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
        sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
        S.Dge M.D
        $$






        share|cite|improve this answer











        $endgroup$



        The Cauchy Schwarz inequality




        $$bigg(sum_{i=1}^{n}a_{i}^2bigg).bigg(sum_{i=1}^{n}b_{i}^2bigg)ge bigg(sum_{i=1}^{n}a_ib_ibigg)^2
        $$




        taking $a_i=|x_i-bar{x}|$ and $b_i=1/n$,



        $$
        bigg(sum_{i=1}^{n}|x_i-bar{x}|^2bigg).bigg(sum_{i=1}^{n}tfrac{1}{n^2}bigg)ge bigg(sum_{i=1}^{n}|x_i-bar{x}|.tfrac{1}{n}bigg)^2\
        bigg(sum_{i=1}^{n}(x_i-bar{x})^2bigg).bigg(n.tfrac{1}{n^2}bigg)ge bigg(frac{sum_{i=1}^{n}|x_i-bar{x}|}{{n}}bigg)^2\
        frac{sum_{i=1}^n(x_i-bar{x})^2}{n}ge bigg(frac{sum_{i=1}^n|x_i-bar{x}|}{n}bigg)^2\
        sqrtfrac{sum_{i=1}^n(x_i-bar{x})^2}{n}gefrac{sum_{i=1}^n|x_i-bar{x}|}{n}\
        S.Dge M.D
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 25 '18 at 19:23

























        answered Jul 21 '17 at 10:27









        ss1729ss1729

        2,00311024




        2,00311024






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2365301%2fprove-standard-deviation-greater-than-or-equal-to-mean-deviation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen