Calculating the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$












1












$begingroup$


I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$



I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
    $endgroup$
    – Mark
    Jan 4 at 16:22












  • $begingroup$
    You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
    $endgroup$
    – Ricardo770
    Jan 4 at 16:50












  • $begingroup$
    The result should be $$frac{pi}{2e}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 4 at 17:12
















1












$begingroup$


I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$



I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
    $endgroup$
    – Mark
    Jan 4 at 16:22












  • $begingroup$
    You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
    $endgroup$
    – Ricardo770
    Jan 4 at 16:50












  • $begingroup$
    The result should be $$frac{pi}{2e}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 4 at 17:12














1












1








1





$begingroup$


I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$



I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$










share|cite|improve this question











$endgroup$




I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$



I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$







real-analysis integration complex-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 4 at 17:49









Bernard

124k741117




124k741117










asked Jan 4 at 16:18









user628226user628226

575




575












  • $begingroup$
    Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
    $endgroup$
    – Mark
    Jan 4 at 16:22












  • $begingroup$
    You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
    $endgroup$
    – Ricardo770
    Jan 4 at 16:50












  • $begingroup$
    The result should be $$frac{pi}{2e}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 4 at 17:12


















  • $begingroup$
    Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
    $endgroup$
    – Mark
    Jan 4 at 16:22












  • $begingroup$
    You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
    $endgroup$
    – Ricardo770
    Jan 4 at 16:50












  • $begingroup$
    The result should be $$frac{pi}{2e}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 4 at 17:12
















$begingroup$
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
$endgroup$
– Mark
Jan 4 at 16:22






$begingroup$
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
$endgroup$
– Mark
Jan 4 at 16:22














$begingroup$
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
$endgroup$
– Ricardo770
Jan 4 at 16:50






$begingroup$
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
$endgroup$
– Ricardo770
Jan 4 at 16:50














$begingroup$
The result should be $$frac{pi}{2e}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 4 at 17:12




$begingroup$
The result should be $$frac{pi}{2e}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 4 at 17:12










2 Answers
2






active

oldest

votes


















2












$begingroup$

$$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$



Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.



$$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$



Now we want to show that this second integral is zero in the limit as $Rtoinfty$.



$$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$



$int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.



So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$



We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.



$$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.



Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$



Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Let us define
    $$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
    for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
    $$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
    by partial fraction decomposition, and
    $$ g(a) = frac{pi a}{4}e^{-a} $$
    by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061796%2fcalculating-the-integral-int-infty-infty-x-sinx-x212-dx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      $$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$



      Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.



      $$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$



      Now we want to show that this second integral is zero in the limit as $Rtoinfty$.



      $$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$



      $int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.



      So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$



      We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.



      $$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.



      Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$



      Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        $$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$



        Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.



        $$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$



        Now we want to show that this second integral is zero in the limit as $Rtoinfty$.



        $$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$



        $int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.



        So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$



        We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.



        $$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.



        Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$



        Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          $$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$



          Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.



          $$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$



          Now we want to show that this second integral is zero in the limit as $Rtoinfty$.



          $$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$



          $int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.



          So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$



          We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.



          $$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.



          Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$



          Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$






          share|cite|improve this answer









          $endgroup$



          $$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$



          Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.



          $$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$



          Now we want to show that this second integral is zero in the limit as $Rtoinfty$.



          $$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$



          $int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.



          So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$



          We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.



          $$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.



          Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$



          Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 4 at 17:22









          John DoeJohn Doe

          12.1k11339




          12.1k11339























              3












              $begingroup$

              Let us define
              $$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
              for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
              $$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
              by partial fraction decomposition, and
              $$ g(a) = frac{pi a}{4}e^{-a} $$
              by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Let us define
                $$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
                for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
                $$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
                by partial fraction decomposition, and
                $$ g(a) = frac{pi a}{4}e^{-a} $$
                by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Let us define
                  $$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
                  for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
                  $$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
                  by partial fraction decomposition, and
                  $$ g(a) = frac{pi a}{4}e^{-a} $$
                  by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.






                  share|cite|improve this answer









                  $endgroup$



                  Let us define
                  $$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
                  for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
                  $$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
                  by partial fraction decomposition, and
                  $$ g(a) = frac{pi a}{4}e^{-a} $$
                  by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 4 at 18:06









                  Jack D'AurizioJack D'Aurizio

                  292k33284673




                  292k33284673






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061796%2fcalculating-the-integral-int-infty-infty-x-sinx-x212-dx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen