Exact function that generated the data












1












$begingroup$


I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]









share|improve this question









$endgroup$








  • 2




    $begingroup$
    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    $endgroup$
    – Somos
    Jan 6 at 21:55








  • 6




    $begingroup$
    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    $endgroup$
    – JimB
    Jan 6 at 22:09






  • 2




    $begingroup$
    @JimB I think you should turn your comment into an answer.
    $endgroup$
    – Anton Antonov
    Jan 7 at 2:13










  • $begingroup$
    @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    $endgroup$
    – JimB
    Jan 7 at 2:17










  • $begingroup$
    Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    $endgroup$
    – MikeY
    Jan 7 at 2:29


















1












$begingroup$


I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]









share|improve this question









$endgroup$








  • 2




    $begingroup$
    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    $endgroup$
    – Somos
    Jan 6 at 21:55








  • 6




    $begingroup$
    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    $endgroup$
    – JimB
    Jan 6 at 22:09






  • 2




    $begingroup$
    @JimB I think you should turn your comment into an answer.
    $endgroup$
    – Anton Antonov
    Jan 7 at 2:13










  • $begingroup$
    @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    $endgroup$
    – JimB
    Jan 7 at 2:17










  • $begingroup$
    Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    $endgroup$
    – MikeY
    Jan 7 at 2:29
















1












1








1





$begingroup$


I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]









share|improve this question









$endgroup$




I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]






fitting






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Jan 6 at 21:35









AlexAlex

132




132








  • 2




    $begingroup$
    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    $endgroup$
    – Somos
    Jan 6 at 21:55








  • 6




    $begingroup$
    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    $endgroup$
    – JimB
    Jan 6 at 22:09






  • 2




    $begingroup$
    @JimB I think you should turn your comment into an answer.
    $endgroup$
    – Anton Antonov
    Jan 7 at 2:13










  • $begingroup$
    @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    $endgroup$
    – JimB
    Jan 7 at 2:17










  • $begingroup$
    Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    $endgroup$
    – MikeY
    Jan 7 at 2:29
















  • 2




    $begingroup$
    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    $endgroup$
    – Somos
    Jan 6 at 21:55








  • 6




    $begingroup$
    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    $endgroup$
    – JimB
    Jan 6 at 22:09






  • 2




    $begingroup$
    @JimB I think you should turn your comment into an answer.
    $endgroup$
    – Anton Antonov
    Jan 7 at 2:13










  • $begingroup$
    @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    $endgroup$
    – JimB
    Jan 7 at 2:17










  • $begingroup$
    Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    $endgroup$
    – MikeY
    Jan 7 at 2:29










2




2




$begingroup$
Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
$endgroup$
– Somos
Jan 6 at 21:55






$begingroup$
Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
$endgroup$
– Somos
Jan 6 at 21:55






6




6




$begingroup$
ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
$endgroup$
– JimB
Jan 6 at 22:09




$begingroup$
ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
$endgroup$
– JimB
Jan 6 at 22:09




2




2




$begingroup$
@JimB I think you should turn your comment into an answer.
$endgroup$
– Anton Antonov
Jan 7 at 2:13




$begingroup$
@JimB I think you should turn your comment into an answer.
$endgroup$
– Anton Antonov
Jan 7 at 2:13












$begingroup$
@AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
$endgroup$
– JimB
Jan 7 at 2:17




$begingroup$
@AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
$endgroup$
– JimB
Jan 7 at 2:17












$begingroup$
Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
$endgroup$
– MikeY
Jan 7 at 2:29






$begingroup$
Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
$endgroup$
– MikeY
Jan 7 at 2:29












3 Answers
3






active

oldest

votes


















4












$begingroup$

In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


$
frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
$



 nlf["AdjustedRSquared"]
nlf["FitResiduals"] // MinMax



0.999999



{-0.0134303, 0.014954}




 Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


enter image description here






share|improve this answer











$endgroup$





















    2












    $begingroup$

    The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



    (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



    FindFormula



    ff = FindFormula[data, x];
    Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


    enter image description here



    ff


    enter image description here



    Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
    (* {3.43479*10^-7, 0.00344725, 1.} *)


    Quantile regression



    Load the QRMon package:



    Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


    First how the formulas found with QRMon package look like:



    qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
    qFunc[x] // PiecewiseExpand


    enter image description here



    Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



    aErrors = Association@Flatten@
    Table[
    {nknots, norder} ->
    QRMonUnit[data]⟹
    QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
    QRMonErrors⟹
    (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
    QRMonTakeValue,
    {nknots, 3, 12, 2}, {norder, 1, 5}];

    GridTableForm[
    SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
    TableHeadings -> {"numbernof knots", "interpolationnorder",
    "max absolutenrelative error"}]


    enter image description here






    share|improve this answer









    $endgroup$













    • $begingroup$
      Sorry, I can only give you a +1.
      $endgroup$
      – JimB
      Jan 7 at 15:19










    • $begingroup$
      @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
      $endgroup$
      – Anton Antonov
      Jan 7 at 15:26










    • $begingroup$
      And you (and I) might have greatly exaggerated my level of purity.
      $endgroup$
      – JimB
      Jan 7 at 15:27



















    1












    $begingroup$

    It also resembles the error function:



    fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


    enter image description here






    share|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188958%2fexact-function-that-generated-the-data%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



      nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


      $
      frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
      $



       nlf["AdjustedRSquared"]
      nlf["FitResiduals"] // MinMax



      0.999999



      {-0.0134303, 0.014954}




       Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


      enter image description here






      share|improve this answer











      $endgroup$


















        4












        $begingroup$

        In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



        nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


        $
        frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
        $



         nlf["AdjustedRSquared"]
        nlf["FitResiduals"] // MinMax



        0.999999



        {-0.0134303, 0.014954}




         Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


        enter image description here






        share|improve this answer











        $endgroup$
















          4












          4








          4





          $begingroup$

          In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



          nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


          $
          frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
          $



           nlf["AdjustedRSquared"]
          nlf["FitResiduals"] // MinMax



          0.999999



          {-0.0134303, 0.014954}




           Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


          enter image description here






          share|improve this answer











          $endgroup$



          In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



          nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


          $
          frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
          $



           nlf["AdjustedRSquared"]
          nlf["FitResiduals"] // MinMax



          0.999999



          {-0.0134303, 0.014954}




           Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Jan 7 at 15:47

























          answered Jan 7 at 0:46









          MikeYMikeY

          3,828916




          3,828916























              2












              $begingroup$

              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here






              share|improve this answer









              $endgroup$













              • $begingroup$
                Sorry, I can only give you a +1.
                $endgroup$
                – JimB
                Jan 7 at 15:19










              • $begingroup$
                @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                $endgroup$
                – Anton Antonov
                Jan 7 at 15:26










              • $begingroup$
                And you (and I) might have greatly exaggerated my level of purity.
                $endgroup$
                – JimB
                Jan 7 at 15:27
















              2












              $begingroup$

              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here






              share|improve this answer









              $endgroup$













              • $begingroup$
                Sorry, I can only give you a +1.
                $endgroup$
                – JimB
                Jan 7 at 15:19










              • $begingroup$
                @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                $endgroup$
                – Anton Antonov
                Jan 7 at 15:26










              • $begingroup$
                And you (and I) might have greatly exaggerated my level of purity.
                $endgroup$
                – JimB
                Jan 7 at 15:27














              2












              2








              2





              $begingroup$

              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here






              share|improve this answer









              $endgroup$



              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered Jan 7 at 14:31









              Anton AntonovAnton Antonov

              24.2k167115




              24.2k167115












              • $begingroup$
                Sorry, I can only give you a +1.
                $endgroup$
                – JimB
                Jan 7 at 15:19










              • $begingroup$
                @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                $endgroup$
                – Anton Antonov
                Jan 7 at 15:26










              • $begingroup$
                And you (and I) might have greatly exaggerated my level of purity.
                $endgroup$
                – JimB
                Jan 7 at 15:27


















              • $begingroup$
                Sorry, I can only give you a +1.
                $endgroup$
                – JimB
                Jan 7 at 15:19










              • $begingroup$
                @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                $endgroup$
                – Anton Antonov
                Jan 7 at 15:26










              • $begingroup$
                And you (and I) might have greatly exaggerated my level of purity.
                $endgroup$
                – JimB
                Jan 7 at 15:27
















              $begingroup$
              Sorry, I can only give you a +1.
              $endgroup$
              – JimB
              Jan 7 at 15:19




              $begingroup$
              Sorry, I can only give you a +1.
              $endgroup$
              – JimB
              Jan 7 at 15:19












              $begingroup$
              @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
              $endgroup$
              – Anton Antonov
              Jan 7 at 15:26




              $begingroup$
              @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
              $endgroup$
              – Anton Antonov
              Jan 7 at 15:26












              $begingroup$
              And you (and I) might have greatly exaggerated my level of purity.
              $endgroup$
              – JimB
              Jan 7 at 15:27




              $begingroup$
              And you (and I) might have greatly exaggerated my level of purity.
              $endgroup$
              – JimB
              Jan 7 at 15:27











              1












              $begingroup$

              It also resembles the error function:



              fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


              enter image description here






              share|improve this answer









              $endgroup$


















                1












                $begingroup$

                It also resembles the error function:



                fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


                enter image description here






                share|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  It also resembles the error function:



                  fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


                  enter image description here






                  share|improve this answer









                  $endgroup$



                  It also resembles the error function:



                  fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Jan 7 at 2:10









                  David KeithDavid Keith

                  1,6481313




                  1,6481313






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188958%2fexact-function-that-generated-the-data%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen