Is it true that $lim_{x to a}frac{f(x)-f(a)}{x-a}=pminfty implies lim_{x to a}f'(x) = pminfty$?
$begingroup$
Is it true that $lim_{x to a}frac{f(x)-f(a)}{x-a}=pminfty implies lim_{x to a}f'(x) = pminfty$?
Here, $f$ is a function defined on some open interval $I$, and $ain I$. Assume $f$ is continuous at $a$ and differentiable around $a$.
I can't for the life of me see how to provedisprove this implication, but my gut feeling is that it's false. Any guidance is greatly appreciated.
calculus
$endgroup$
add a comment |
$begingroup$
Is it true that $lim_{x to a}frac{f(x)-f(a)}{x-a}=pminfty implies lim_{x to a}f'(x) = pminfty$?
Here, $f$ is a function defined on some open interval $I$, and $ain I$. Assume $f$ is continuous at $a$ and differentiable around $a$.
I can't for the life of me see how to provedisprove this implication, but my gut feeling is that it's false. Any guidance is greatly appreciated.
calculus
$endgroup$
$begingroup$
isn't that definition of limit? the (ε, δ) should provide that the function is strictly increasing and must go unbounded to $ infty $
$endgroup$
– user29418
Jan 7 at 1:28
$begingroup$
Derivative of a differential function need not be continuous
$endgroup$
– Sorfosh
Jan 7 at 6:00
add a comment |
$begingroup$
Is it true that $lim_{x to a}frac{f(x)-f(a)}{x-a}=pminfty implies lim_{x to a}f'(x) = pminfty$?
Here, $f$ is a function defined on some open interval $I$, and $ain I$. Assume $f$ is continuous at $a$ and differentiable around $a$.
I can't for the life of me see how to provedisprove this implication, but my gut feeling is that it's false. Any guidance is greatly appreciated.
calculus
$endgroup$
Is it true that $lim_{x to a}frac{f(x)-f(a)}{x-a}=pminfty implies lim_{x to a}f'(x) = pminfty$?
Here, $f$ is a function defined on some open interval $I$, and $ain I$. Assume $f$ is continuous at $a$ and differentiable around $a$.
I can't for the life of me see how to provedisprove this implication, but my gut feeling is that it's false. Any guidance is greatly appreciated.
calculus
calculus
edited Jan 7 at 1:14
Namaste
1
1
asked Jan 7 at 0:32
Euler's FriendEuler's Friend
465
465
$begingroup$
isn't that definition of limit? the (ε, δ) should provide that the function is strictly increasing and must go unbounded to $ infty $
$endgroup$
– user29418
Jan 7 at 1:28
$begingroup$
Derivative of a differential function need not be continuous
$endgroup$
– Sorfosh
Jan 7 at 6:00
add a comment |
$begingroup$
isn't that definition of limit? the (ε, δ) should provide that the function is strictly increasing and must go unbounded to $ infty $
$endgroup$
– user29418
Jan 7 at 1:28
$begingroup$
Derivative of a differential function need not be continuous
$endgroup$
– Sorfosh
Jan 7 at 6:00
$begingroup$
isn't that definition of limit? the (ε, δ) should provide that the function is strictly increasing and must go unbounded to $ infty $
$endgroup$
– user29418
Jan 7 at 1:28
$begingroup$
isn't that definition of limit? the (ε, δ) should provide that the function is strictly increasing and must go unbounded to $ infty $
$endgroup$
– user29418
Jan 7 at 1:28
$begingroup$
Derivative of a differential function need not be continuous
$endgroup$
– Sorfosh
Jan 7 at 6:00
$begingroup$
Derivative of a differential function need not be continuous
$endgroup$
– Sorfosh
Jan 7 at 6:00
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The claim is false. Consider
$$
g(x)=sqrt{x}sinfrac{1}{x}+x^{1/4},qquad x>0,
$$
and define $f$ on $mathbb R$ by
$$
f(x)=begin{cases}g(x) & text{for }x>0, \ 0 & text{for }x=0, \ -g(-x) & text{for }x<0.end{cases}
$$
Then $f$ is continuous everywhere, differentiable in $mathbb Rbackslash{0}$ and satisfies $f(-x)=-f(x)$.
Moreover, for $x>0$,
begin{align*}
frac{f(x)}{x}=frac{1}{sqrt{x}}sinfrac{1}{x}+frac{1}{x^{3/4}}geq-frac{1}{x^{1/2}}+frac{1}{x^{3/4}}longrightarrow+infty,quadtext{as }xto0+.
end{align*}
Due to the symmetry, the same is true for $x<0$ and $xto0-$. Thus, $f(x)/xto+infty$ as $xto0$.
Now, for $x>0$,
$$
f'(x)=frac{x^{3/4}+2 x sin left(frac{1}{x}right)-4 cos left(frac{1}{x}right)}{4 x^{3/2}}.
$$
However, the limit $lim_{xto0+}f'(x)$ does not even exist. For $x_n:=1/(npi)$ we have
begin{align*}
f'(x_n)=frac{pi ^{3/4}}{4 left(frac{1}{n}right)^{3/4}}-frac{pi ^{3/2} (-1)^n}{left(frac{1}{n}right)^{3/2}},
end{align*}
and so $f'(x_{2n})to-infty$, while $f'(x_{2n+1})to+infty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064553%2fis-it-true-that-lim-x-to-a-fracfx-fax-a-pm-infty-implies-lim%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The claim is false. Consider
$$
g(x)=sqrt{x}sinfrac{1}{x}+x^{1/4},qquad x>0,
$$
and define $f$ on $mathbb R$ by
$$
f(x)=begin{cases}g(x) & text{for }x>0, \ 0 & text{for }x=0, \ -g(-x) & text{for }x<0.end{cases}
$$
Then $f$ is continuous everywhere, differentiable in $mathbb Rbackslash{0}$ and satisfies $f(-x)=-f(x)$.
Moreover, for $x>0$,
begin{align*}
frac{f(x)}{x}=frac{1}{sqrt{x}}sinfrac{1}{x}+frac{1}{x^{3/4}}geq-frac{1}{x^{1/2}}+frac{1}{x^{3/4}}longrightarrow+infty,quadtext{as }xto0+.
end{align*}
Due to the symmetry, the same is true for $x<0$ and $xto0-$. Thus, $f(x)/xto+infty$ as $xto0$.
Now, for $x>0$,
$$
f'(x)=frac{x^{3/4}+2 x sin left(frac{1}{x}right)-4 cos left(frac{1}{x}right)}{4 x^{3/2}}.
$$
However, the limit $lim_{xto0+}f'(x)$ does not even exist. For $x_n:=1/(npi)$ we have
begin{align*}
f'(x_n)=frac{pi ^{3/4}}{4 left(frac{1}{n}right)^{3/4}}-frac{pi ^{3/2} (-1)^n}{left(frac{1}{n}right)^{3/2}},
end{align*}
and so $f'(x_{2n})to-infty$, while $f'(x_{2n+1})to+infty$.
$endgroup$
add a comment |
$begingroup$
The claim is false. Consider
$$
g(x)=sqrt{x}sinfrac{1}{x}+x^{1/4},qquad x>0,
$$
and define $f$ on $mathbb R$ by
$$
f(x)=begin{cases}g(x) & text{for }x>0, \ 0 & text{for }x=0, \ -g(-x) & text{for }x<0.end{cases}
$$
Then $f$ is continuous everywhere, differentiable in $mathbb Rbackslash{0}$ and satisfies $f(-x)=-f(x)$.
Moreover, for $x>0$,
begin{align*}
frac{f(x)}{x}=frac{1}{sqrt{x}}sinfrac{1}{x}+frac{1}{x^{3/4}}geq-frac{1}{x^{1/2}}+frac{1}{x^{3/4}}longrightarrow+infty,quadtext{as }xto0+.
end{align*}
Due to the symmetry, the same is true for $x<0$ and $xto0-$. Thus, $f(x)/xto+infty$ as $xto0$.
Now, for $x>0$,
$$
f'(x)=frac{x^{3/4}+2 x sin left(frac{1}{x}right)-4 cos left(frac{1}{x}right)}{4 x^{3/2}}.
$$
However, the limit $lim_{xto0+}f'(x)$ does not even exist. For $x_n:=1/(npi)$ we have
begin{align*}
f'(x_n)=frac{pi ^{3/4}}{4 left(frac{1}{n}right)^{3/4}}-frac{pi ^{3/2} (-1)^n}{left(frac{1}{n}right)^{3/2}},
end{align*}
and so $f'(x_{2n})to-infty$, while $f'(x_{2n+1})to+infty$.
$endgroup$
add a comment |
$begingroup$
The claim is false. Consider
$$
g(x)=sqrt{x}sinfrac{1}{x}+x^{1/4},qquad x>0,
$$
and define $f$ on $mathbb R$ by
$$
f(x)=begin{cases}g(x) & text{for }x>0, \ 0 & text{for }x=0, \ -g(-x) & text{for }x<0.end{cases}
$$
Then $f$ is continuous everywhere, differentiable in $mathbb Rbackslash{0}$ and satisfies $f(-x)=-f(x)$.
Moreover, for $x>0$,
begin{align*}
frac{f(x)}{x}=frac{1}{sqrt{x}}sinfrac{1}{x}+frac{1}{x^{3/4}}geq-frac{1}{x^{1/2}}+frac{1}{x^{3/4}}longrightarrow+infty,quadtext{as }xto0+.
end{align*}
Due to the symmetry, the same is true for $x<0$ and $xto0-$. Thus, $f(x)/xto+infty$ as $xto0$.
Now, for $x>0$,
$$
f'(x)=frac{x^{3/4}+2 x sin left(frac{1}{x}right)-4 cos left(frac{1}{x}right)}{4 x^{3/2}}.
$$
However, the limit $lim_{xto0+}f'(x)$ does not even exist. For $x_n:=1/(npi)$ we have
begin{align*}
f'(x_n)=frac{pi ^{3/4}}{4 left(frac{1}{n}right)^{3/4}}-frac{pi ^{3/2} (-1)^n}{left(frac{1}{n}right)^{3/2}},
end{align*}
and so $f'(x_{2n})to-infty$, while $f'(x_{2n+1})to+infty$.
$endgroup$
The claim is false. Consider
$$
g(x)=sqrt{x}sinfrac{1}{x}+x^{1/4},qquad x>0,
$$
and define $f$ on $mathbb R$ by
$$
f(x)=begin{cases}g(x) & text{for }x>0, \ 0 & text{for }x=0, \ -g(-x) & text{for }x<0.end{cases}
$$
Then $f$ is continuous everywhere, differentiable in $mathbb Rbackslash{0}$ and satisfies $f(-x)=-f(x)$.
Moreover, for $x>0$,
begin{align*}
frac{f(x)}{x}=frac{1}{sqrt{x}}sinfrac{1}{x}+frac{1}{x^{3/4}}geq-frac{1}{x^{1/2}}+frac{1}{x^{3/4}}longrightarrow+infty,quadtext{as }xto0+.
end{align*}
Due to the symmetry, the same is true for $x<0$ and $xto0-$. Thus, $f(x)/xto+infty$ as $xto0$.
Now, for $x>0$,
$$
f'(x)=frac{x^{3/4}+2 x sin left(frac{1}{x}right)-4 cos left(frac{1}{x}right)}{4 x^{3/2}}.
$$
However, the limit $lim_{xto0+}f'(x)$ does not even exist. For $x_n:=1/(npi)$ we have
begin{align*}
f'(x_n)=frac{pi ^{3/4}}{4 left(frac{1}{n}right)^{3/4}}-frac{pi ^{3/2} (-1)^n}{left(frac{1}{n}right)^{3/2}},
end{align*}
and so $f'(x_{2n})to-infty$, while $f'(x_{2n+1})to+infty$.
answered Jan 7 at 2:27
sranthropsranthrop
7,1311925
7,1311925
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064553%2fis-it-true-that-lim-x-to-a-fracfx-fax-a-pm-infty-implies-lim%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
isn't that definition of limit? the (ε, δ) should provide that the function is strictly increasing and must go unbounded to $ infty $
$endgroup$
– user29418
Jan 7 at 1:28
$begingroup$
Derivative of a differential function need not be continuous
$endgroup$
– Sorfosh
Jan 7 at 6:00