Laplace Transform - asking for a tip












0














I'm trying to solve this function using the Laplace Transform theorem.



$f(t) = cos2(t-frac{1}{8}pi)$



Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.



Thank you in advance.










share|cite|improve this question
























  • Do you mean $cos^2$?
    – Sean Roberson
    Nov 29 at 8:57






  • 1




    And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
    – Sean Roberson
    Nov 29 at 8:59










  • @SeanRoberson it's literally Cos(2(t-1/8*pi)).
    – Subin Park
    Dec 1 at 6:14
















0














I'm trying to solve this function using the Laplace Transform theorem.



$f(t) = cos2(t-frac{1}{8}pi)$



Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.



Thank you in advance.










share|cite|improve this question
























  • Do you mean $cos^2$?
    – Sean Roberson
    Nov 29 at 8:57






  • 1




    And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
    – Sean Roberson
    Nov 29 at 8:59










  • @SeanRoberson it's literally Cos(2(t-1/8*pi)).
    – Subin Park
    Dec 1 at 6:14














0












0








0







I'm trying to solve this function using the Laplace Transform theorem.



$f(t) = cos2(t-frac{1}{8}pi)$



Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.



Thank you in advance.










share|cite|improve this question















I'm trying to solve this function using the Laplace Transform theorem.



$f(t) = cos2(t-frac{1}{8}pi)$



Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.



Thank you in advance.







differential-equations laplace-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 29 at 9:41









Jonathan

16412




16412










asked Nov 29 at 8:28









Subin Park

898




898












  • Do you mean $cos^2$?
    – Sean Roberson
    Nov 29 at 8:57






  • 1




    And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
    – Sean Roberson
    Nov 29 at 8:59










  • @SeanRoberson it's literally Cos(2(t-1/8*pi)).
    – Subin Park
    Dec 1 at 6:14


















  • Do you mean $cos^2$?
    – Sean Roberson
    Nov 29 at 8:57






  • 1




    And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
    – Sean Roberson
    Nov 29 at 8:59










  • @SeanRoberson it's literally Cos(2(t-1/8*pi)).
    – Subin Park
    Dec 1 at 6:14
















Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57




Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57




1




1




And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59




And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59












@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14




@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14










3 Answers
3






active

oldest

votes


















1














To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:



$I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$



Solving the integral, we get that:



$I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$



This corresponds to the item on the table.



To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.






share|cite|improve this answer





























    0














    $require{cancel}$
    Write



    begin{eqnarray}
    f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
    &=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
    end{eqnarray}



    We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general



    $$
    mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
    $$



    So we have



    $$
    mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
    $$



    Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that



    begin{eqnarray}
    mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
    &=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
    end{eqnarray}



    Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$



    begin{eqnarray}
    mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
    &=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
    &=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
    left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
    mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
    end{eqnarray}



    The other one is pretty similar to this one






    share|cite|improve this answer





























      0














      $$f(t)=sin(at+b)$$



      $$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$



      You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:



      $$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$



      $$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$



      Again:



      $$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$



      $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$



      $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$



      $$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$



      $$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$



      Finally:



      $$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$



      In your case:



      $$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$



      $$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$



      you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)






      share|cite|improve this answer























        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018354%2flaplace-transform-asking-for-a-tip%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1














        To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:



        $I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$



        Solving the integral, we get that:



        $I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$



        This corresponds to the item on the table.



        To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.






        share|cite|improve this answer


























          1














          To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:



          $I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$



          Solving the integral, we get that:



          $I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$



          This corresponds to the item on the table.



          To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.






          share|cite|improve this answer
























            1












            1








            1






            To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:



            $I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$



            Solving the integral, we get that:



            $I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$



            This corresponds to the item on the table.



            To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.






            share|cite|improve this answer












            To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:



            $I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$



            Solving the integral, we get that:



            $I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$



            This corresponds to the item on the table.



            To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 29 at 9:27









            LordVader007

            369213




            369213























                0














                $require{cancel}$
                Write



                begin{eqnarray}
                f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
                &=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
                end{eqnarray}



                We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general



                $$
                mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
                $$



                So we have



                $$
                mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
                $$



                Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that



                begin{eqnarray}
                mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
                &=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
                end{eqnarray}



                Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$



                begin{eqnarray}
                mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
                &=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
                &=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
                left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
                mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
                end{eqnarray}



                The other one is pretty similar to this one






                share|cite|improve this answer


























                  0














                  $require{cancel}$
                  Write



                  begin{eqnarray}
                  f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
                  &=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
                  end{eqnarray}



                  We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general



                  $$
                  mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
                  $$



                  So we have



                  $$
                  mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
                  $$



                  Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that



                  begin{eqnarray}
                  mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
                  &=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
                  end{eqnarray}



                  Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$



                  begin{eqnarray}
                  mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
                  &=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
                  &=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
                  left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
                  mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
                  end{eqnarray}



                  The other one is pretty similar to this one






                  share|cite|improve this answer
























                    0












                    0








                    0






                    $require{cancel}$
                    Write



                    begin{eqnarray}
                    f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
                    &=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
                    end{eqnarray}



                    We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general



                    $$
                    mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
                    $$



                    So we have



                    $$
                    mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
                    $$



                    Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that



                    begin{eqnarray}
                    mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
                    &=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
                    end{eqnarray}



                    Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$



                    begin{eqnarray}
                    mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
                    &=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
                    &=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
                    left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
                    mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
                    end{eqnarray}



                    The other one is pretty similar to this one






                    share|cite|improve this answer












                    $require{cancel}$
                    Write



                    begin{eqnarray}
                    f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
                    &=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
                    end{eqnarray}



                    We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general



                    $$
                    mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
                    $$



                    So we have



                    $$
                    mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
                    $$



                    Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that



                    begin{eqnarray}
                    mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
                    &=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
                    end{eqnarray}



                    Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$



                    begin{eqnarray}
                    mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
                    &=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
                    &=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
                    left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
                    mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
                    end{eqnarray}



                    The other one is pretty similar to this one







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 29 at 9:33









                    caverac

                    13k21028




                    13k21028























                        0














                        $$f(t)=sin(at+b)$$



                        $$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$



                        You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:



                        $$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$



                        $$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$



                        Again:



                        $$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$



                        $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$



                        $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$



                        $$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$



                        $$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$



                        Finally:



                        $$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$



                        In your case:



                        $$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$



                        $$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$



                        you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)






                        share|cite|improve this answer




























                          0














                          $$f(t)=sin(at+b)$$



                          $$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$



                          You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:



                          $$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$



                          $$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$



                          Again:



                          $$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$



                          $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$



                          $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$



                          $$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$



                          $$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$



                          Finally:



                          $$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$



                          In your case:



                          $$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$



                          $$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$



                          you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)






                          share|cite|improve this answer


























                            0












                            0








                            0






                            $$f(t)=sin(at+b)$$



                            $$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$



                            You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:



                            $$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$



                            $$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$



                            Again:



                            $$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$



                            $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$



                            $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$



                            $$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$



                            $$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$



                            Finally:



                            $$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$



                            In your case:



                            $$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$



                            $$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$



                            you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)






                            share|cite|improve this answer














                            $$f(t)=sin(at+b)$$



                            $$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$



                            You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:



                            $$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$



                            $$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$



                            Again:



                            $$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$



                            $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$



                            $$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$



                            $$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$



                            $$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$



                            Finally:



                            $$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$



                            In your case:



                            $$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$



                            $$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$



                            you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Nov 29 at 10:07

























                            answered Nov 29 at 9:25









                            Oldboy

                            6,5101730




                            6,5101730






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018354%2flaplace-transform-asking-for-a-tip%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Wiesbaden

                                Marschland

                                Dieringhausen