Laplace Transform - asking for a tip
I'm trying to solve this function using the Laplace Transform theorem.
$f(t) = cos2(t-frac{1}{8}pi)$
Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.
Thank you in advance.
differential-equations laplace-transform
add a comment |
I'm trying to solve this function using the Laplace Transform theorem.
$f(t) = cos2(t-frac{1}{8}pi)$
Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.
Thank you in advance.
differential-equations laplace-transform
Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57
1
And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59
@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14
add a comment |
I'm trying to solve this function using the Laplace Transform theorem.
$f(t) = cos2(t-frac{1}{8}pi)$
Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.
Thank you in advance.
differential-equations laplace-transform
I'm trying to solve this function using the Laplace Transform theorem.
$f(t) = cos2(t-frac{1}{8}pi)$
Sure I could just use the table, which would give me the answer right away, but pretend that I do not have that kind of luxury, I'd like to know how to approach these types of functions, more specifically, $f(t)=cos(at+b)$ or $f(t)=sin(at+b)$.
Thank you in advance.
differential-equations laplace-transform
differential-equations laplace-transform
edited Nov 29 at 9:41
Jonathan
16412
16412
asked Nov 29 at 8:28
Subin Park
898
898
Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57
1
And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59
@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14
add a comment |
Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57
1
And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59
@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14
Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57
Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57
1
1
And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59
And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59
@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14
@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14
add a comment |
3 Answers
3
active
oldest
votes
To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:
$I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$
Solving the integral, we get that:
$I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$
This corresponds to the item on the table.
To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.
add a comment |
$require{cancel}$
Write
begin{eqnarray}
f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
&=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
end{eqnarray}
We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general
$$
mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
$$
So we have
$$
mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
$$
Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that
begin{eqnarray}
mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
&=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
end{eqnarray}
Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$
begin{eqnarray}
mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
&=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
&=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
end{eqnarray}
The other one is pretty similar to this one
add a comment |
$$f(t)=sin(at+b)$$
$$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$
You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:
$$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$
Again:
$$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$
$$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$
$$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$
Finally:
$$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$
In your case:
$$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$
$$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$
you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018354%2flaplace-transform-asking-for-a-tip%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:
$I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$
Solving the integral, we get that:
$I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$
This corresponds to the item on the table.
To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.
add a comment |
To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:
$I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$
Solving the integral, we get that:
$I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$
This corresponds to the item on the table.
To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.
add a comment |
To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:
$I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$
Solving the integral, we get that:
$I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$
This corresponds to the item on the table.
To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.
To use the Laplace Transform, I recommend you use the fact that $cos(t) = frac{e^{it}+e^{-it}}{2}$ (this can be easily proven using Euler's identity). Start by taking Laplace transform of $cos(t)$:
$I =int_0^{infty}e^{-st}cos(t)dt = int_0^{infty} e^{-st}frac{e^{it}+e^{-it}}{2}dt = int_0^{infty}frac{e^{t(i-s)}+e^{-t(s+i)}}{2}dt = int_0^inftyfrac{e^{t(i-s)}}{2}dt +int_0^inftyfrac{e^{-t(i+s)}}{2}dt$
Solving the integral, we get that:
$I = frac{e^{-t(-i+s)}}{2(i-s)}Big|_0^infty + frac{e^{-t(s+i)}}{-2(s+i)}Big|_0^infty = frac{1}{2}Big[frac{-1}{i-s}+frac{1}{s+i}Big] = frac{1}{2}Big[frac{-(s+i)+(i-s)}{(i-s)(s+i)}Big]= frac{1}{2}Big[frac{-2s}{i^2-s^2}Big] = frac{1}{2}Big[frac{2s}{-i^2+s^2}Big]=frac{1}{2}Big[frac{2s}{s^2+1}Big]= frac{s}{s^2+1}$
This corresponds to the item on the table.
To get the Laplace transform of $cos(at+b)$,just use the fact that $cos(at+b)= cos(b)cos(at)-sin(b)sin(at)$, and pull out constants & apply linearity, essentially repeating the calculation above.
answered Nov 29 at 9:27
LordVader007
369213
369213
add a comment |
add a comment |
$require{cancel}$
Write
begin{eqnarray}
f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
&=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
end{eqnarray}
We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general
$$
mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
$$
So we have
$$
mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
$$
Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that
begin{eqnarray}
mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
&=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
end{eqnarray}
Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$
begin{eqnarray}
mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
&=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
&=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
end{eqnarray}
The other one is pretty similar to this one
add a comment |
$require{cancel}$
Write
begin{eqnarray}
f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
&=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
end{eqnarray}
We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general
$$
mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
$$
So we have
$$
mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
$$
Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that
begin{eqnarray}
mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
&=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
end{eqnarray}
Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$
begin{eqnarray}
mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
&=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
&=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
end{eqnarray}
The other one is pretty similar to this one
add a comment |
$require{cancel}$
Write
begin{eqnarray}
f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
&=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
end{eqnarray}
We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general
$$
mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
$$
So we have
$$
mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
$$
Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that
begin{eqnarray}
mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
&=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
end{eqnarray}
Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$
begin{eqnarray}
mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
&=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
&=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
end{eqnarray}
The other one is pretty similar to this one
$require{cancel}$
Write
begin{eqnarray}
f(t) &=& cos2(t - pi/8) = cos(2t - pi/4) = cos(2t)cos(pi/4) - sin(2t)sin(pi/4) \
&=& frac{sqrt{2}}{2}cos(2t) - frac{sqrt{2}}{{2}}sin(2t)
end{eqnarray}
We need to calculate the transform of $cos(2t)$ and $sin(2t)$, will do the first one and leave the second one for you to practice. In general
$$
mathcal{L}[f] = int_0^{+infty}{rm d}s ~e^{-st} f(t)
$$
So we have
$$
mathcal{L}[cos (2t)] = int_0^{+infty}{rm d}t~e^{-st}cos(2t)
$$
Now do integration by parts $u = e^{-st}$, ${rm d}v = cos(2t)$, so that
begin{eqnarray}
mathcal{L}[cos (2t)] &=& cancelto{0}{left.frac{1}{2}e^{-st}sin(2t)right|_0^{+infty}} - int_0^{+infty}{rm d}t~left[-s e^{-st}right]left[frac{1}{2}sin(2t)right] \
&=& frac{s}{2}int_0^{+infty}{rm d}t~ e^{-st}sin(2t)
end{eqnarray}
Let's do yet another integration by parts $u = e^{-st}$, ${rm d}v = sin(2t)$
begin{eqnarray}
mathcal{L}[cos (2t)] &=& frac{s}{2}left{left. -frac{1}{2}e^{-st}cos(2t) right|_{0}^{+infty} - int_0^{+infty} {rm d}t~ left[-s e^{-st}right]left[ -frac{1}{2}cos(2t)right] right} \
&=& frac{s}{2}left{ frac{1}{2} - frac{s}{2}int_0^{+infty}{rm d}t~e^{-st}cos(2t)right} \
&=& frac{s}{2} - frac{s^2}{4}mathcal{L}[cos (2t)] \
left(1 + frac{s^2}{4} right) mathcal{L}[cos (2t)]&=& frac{s}{4} \
mathcal{L}[cos (2t)] &=& frac{s/4}{1 + s^2/4} = frac{s}{4 + s^2}
end{eqnarray}
The other one is pretty similar to this one
answered Nov 29 at 9:33
caverac
13k21028
13k21028
add a comment |
add a comment |
$$f(t)=sin(at+b)$$
$$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$
You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:
$$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$
Again:
$$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$
$$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$
$$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$
Finally:
$$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$
In your case:
$$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$
$$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$
you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)
add a comment |
$$f(t)=sin(at+b)$$
$$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$
You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:
$$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$
Again:
$$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$
$$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$
$$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$
Finally:
$$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$
In your case:
$$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$
$$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$
you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)
add a comment |
$$f(t)=sin(at+b)$$
$$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$
You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:
$$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$
Again:
$$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$
$$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$
$$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$
Finally:
$$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$
In your case:
$$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$
$$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$
you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)
$$f(t)=sin(at+b)$$
$$mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt=int_0 ^infty e^{-st} sin(at+b) dt$$
You can solve $$I=int e^{-st} sin(at+b) dt$$ ...by using integration by parts:
$$u=e^{-st},space du=-se^{-st},space dv=sin(at+b), space v=-{cos(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saint e^{-st} cos(at+b) dt$$
Again:
$$u=e^{-st},space du=-se^{-st},space dv=cos(at+b), space v={sin(at+b) over a}$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa int e^{-st} sin(at+b) dt right)$$
$$I=-{e^{-st}cos(at+b) over a}-frac saleft( {e^{-st}sin(at+b) over a} +frac sa I right)$$
$$(1+{s^2over a^2}) I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over a^2}$$
$$I=-{ae^{-st}cos(at+b) +se^{-st}sin(at+b)over s^2 + a^2}$$
Finally:
$$mathcal{L}(f)=I |_0^infty=I(infty)-I(0)={acos b +ssin bover s^2 + a^2}$$
In your case:
$$f(t) = cos(2t-frac{pi}{4})=sin(fracpi2 - 2t+frac{pi}{4})=sin(-2t+frac{3pi}{4})implies a=-2, b=frac{3pi}{4}$$
$$mathcal{L}(f)={-2cos frac{3pi}{4} +ssin frac{3pi}{4}over s^2 + 4}=frac{sqrt{2}+sfrac{sqrt{2}}{2}}{s^2 + 4}={sqrt{2}over2}frac{s+2}{s^2+4}$$
you can check the final result on WolframAlpha: https://www.wolframalpha.com/input/?i=laplace+transform+cos(2t-pi%2F4)
edited Nov 29 at 10:07
answered Nov 29 at 9:25
Oldboy
6,5101730
6,5101730
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018354%2flaplace-transform-asking-for-a-tip%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Do you mean $cos^2$?
– Sean Roberson
Nov 29 at 8:57
1
And in general, to find a Laplace transform, just use the integral definition: $mathcal{L}(f) = int_0 ^infty e^{-st} f(t) dt.$
– Sean Roberson
Nov 29 at 8:59
@SeanRoberson it's literally Cos(2(t-1/8*pi)).
– Subin Park
Dec 1 at 6:14