Solve the Differential equation $left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin...

Multi tool use
Multi tool use












1














Solve the equation



$$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$



My try:



Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$



so have modified the equation as:



$$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$



$$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$



$$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$



any way to proceed here?










share|cite|improve this question



























    1














    Solve the equation



    $$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$



    My try:



    Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$



    so have modified the equation as:



    $$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$



    $$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$



    $$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$



    any way to proceed here?










    share|cite|improve this question

























      1












      1








      1







      Solve the equation



      $$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$



      My try:



      Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$



      so have modified the equation as:



      $$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$



      $$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$



      $$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$



      any way to proceed here?










      share|cite|improve this question













      Solve the equation



      $$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$



      My try:



      Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$



      so have modified the equation as:



      $$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$



      $$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$



      $$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$



      any way to proceed here?







      algebra-precalculus differential-equations derivatives indefinite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 29 at 8:26









      Umesh shankar

      2,55321219




      2,55321219






















          1 Answer
          1






          active

          oldest

          votes


















          2














          If you multiply the expression on the left-hand side by $y$, you get the exact differential,
          $$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$



          So the solution is



          $$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018352%2fsolve-the-differential-equation-lefty-e-sin-x-cos-x-y32xy-rightdx-left%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            If you multiply the expression on the left-hand side by $y$, you get the exact differential,
            $$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$



            So the solution is



            $$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$






            share|cite|improve this answer


























              2














              If you multiply the expression on the left-hand side by $y$, you get the exact differential,
              $$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$



              So the solution is



              $$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$






              share|cite|improve this answer
























                2












                2








                2






                If you multiply the expression on the left-hand side by $y$, you get the exact differential,
                $$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$



                So the solution is



                $$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$






                share|cite|improve this answer












                If you multiply the expression on the left-hand side by $y$, you get the exact differential,
                $$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$



                So the solution is



                $$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 29 at 8:36









                Kenny Wong

                16.8k21135




                16.8k21135






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018352%2fsolve-the-differential-equation-lefty-e-sin-x-cos-x-y32xy-rightdx-left%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    U0iaG0jzvkNjoOnDRT5fM,8d0ZjXrxNQl0kZK utGsYQAazNugAdXheX8GBNN0,0B8f
                    QCVf q8iYFz1KwUQCns LTH0kCoIkzLlbd SDZXZp8dmEeHos,QOh5vSlgO

                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen