Computing cosine.similarity in R gives different results compared to manual?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
Here are my vectors:
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 0.688 0.317
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 2.94 0.324
or for simplicity:
a <- c(.688,.317)
b <- c(2.94, .324)
I want to compute tcR::cosine.similarity
:
cosine.similarity(a,b, .do.norm = T) gives me 1.388816
If I will do it myself according to Wikipedia:
sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2)))
And I get 0.948604
so what is different here?
Please advise. I suppose it is the normalization but will be happy for your help.
r cosine-similarity
add a comment |
Here are my vectors:
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 0.688 0.317
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 2.94 0.324
or for simplicity:
a <- c(.688,.317)
b <- c(2.94, .324)
I want to compute tcR::cosine.similarity
:
cosine.similarity(a,b, .do.norm = T) gives me 1.388816
If I will do it myself according to Wikipedia:
sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2)))
And I get 0.948604
so what is different here?
Please advise. I suppose it is the normalization but will be happy for your help.
r cosine-similarity
add a comment |
Here are my vectors:
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 0.688 0.317
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 2.94 0.324
or for simplicity:
a <- c(.688,.317)
b <- c(2.94, .324)
I want to compute tcR::cosine.similarity
:
cosine.similarity(a,b, .do.norm = T) gives me 1.388816
If I will do it myself according to Wikipedia:
sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2)))
And I get 0.948604
so what is different here?
Please advise. I suppose it is the normalization but will be happy for your help.
r cosine-similarity
Here are my vectors:
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 0.688 0.317
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 2.94 0.324
or for simplicity:
a <- c(.688,.317)
b <- c(2.94, .324)
I want to compute tcR::cosine.similarity
:
cosine.similarity(a,b, .do.norm = T) gives me 1.388816
If I will do it myself according to Wikipedia:
sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2)))
And I get 0.948604
so what is different here?
Please advise. I suppose it is the normalization but will be happy for your help.
r cosine-similarity
r cosine-similarity
asked Nov 26 '18 at 15:42
SteveSSteveS
666311
666311
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
In the tcR
package the cosine.similarity
function contains the following:
function (.alpha, .beta, .do.norm = NA, .laplace = 0)
{
.alpha <- check.distribution(.alpha, .do.norm, .laplace)
.beta <- check.distribution(.beta, .do.norm, .laplace)
sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
}
The intervening check.distribution
calculation returns a vector that sums to 1, but does not appear to be normalized.
I'd recommend using the cosine
function in the lsa
package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a))
yields the following:
a b b a
a 1.000000 0.948604 0.948604 1.000000
b 0.948604 1.000000 1.000000 0.948604
b 0.948604 1.000000 1.000000 0.948604
a 1.000000 0.948604 0.948604 1.000000
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53484571%2fcomputing-cosine-similarity-in-r-gives-different-results-compared-to-manual%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
In the tcR
package the cosine.similarity
function contains the following:
function (.alpha, .beta, .do.norm = NA, .laplace = 0)
{
.alpha <- check.distribution(.alpha, .do.norm, .laplace)
.beta <- check.distribution(.beta, .do.norm, .laplace)
sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
}
The intervening check.distribution
calculation returns a vector that sums to 1, but does not appear to be normalized.
I'd recommend using the cosine
function in the lsa
package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a))
yields the following:
a b b a
a 1.000000 0.948604 0.948604 1.000000
b 0.948604 1.000000 1.000000 0.948604
b 0.948604 1.000000 1.000000 0.948604
a 1.000000 0.948604 0.948604 1.000000
add a comment |
In the tcR
package the cosine.similarity
function contains the following:
function (.alpha, .beta, .do.norm = NA, .laplace = 0)
{
.alpha <- check.distribution(.alpha, .do.norm, .laplace)
.beta <- check.distribution(.beta, .do.norm, .laplace)
sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
}
The intervening check.distribution
calculation returns a vector that sums to 1, but does not appear to be normalized.
I'd recommend using the cosine
function in the lsa
package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a))
yields the following:
a b b a
a 1.000000 0.948604 0.948604 1.000000
b 0.948604 1.000000 1.000000 0.948604
b 0.948604 1.000000 1.000000 0.948604
a 1.000000 0.948604 0.948604 1.000000
add a comment |
In the tcR
package the cosine.similarity
function contains the following:
function (.alpha, .beta, .do.norm = NA, .laplace = 0)
{
.alpha <- check.distribution(.alpha, .do.norm, .laplace)
.beta <- check.distribution(.beta, .do.norm, .laplace)
sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
}
The intervening check.distribution
calculation returns a vector that sums to 1, but does not appear to be normalized.
I'd recommend using the cosine
function in the lsa
package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a))
yields the following:
a b b a
a 1.000000 0.948604 0.948604 1.000000
b 0.948604 1.000000 1.000000 0.948604
b 0.948604 1.000000 1.000000 0.948604
a 1.000000 0.948604 0.948604 1.000000
In the tcR
package the cosine.similarity
function contains the following:
function (.alpha, .beta, .do.norm = NA, .laplace = 0)
{
.alpha <- check.distribution(.alpha, .do.norm, .laplace)
.beta <- check.distribution(.beta, .do.norm, .laplace)
sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
}
The intervening check.distribution
calculation returns a vector that sums to 1, but does not appear to be normalized.
I'd recommend using the cosine
function in the lsa
package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a))
yields the following:
a b b a
a 1.000000 0.948604 0.948604 1.000000
b 0.948604 1.000000 1.000000 0.948604
b 0.948604 1.000000 1.000000 0.948604
a 1.000000 0.948604 0.948604 1.000000
answered Nov 26 '18 at 19:48
Edward CarneyEdward Carney
1,15456
1,15456
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53484571%2fcomputing-cosine-similarity-in-r-gives-different-results-compared-to-manual%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown