Computing cosine.similarity in R gives different results compared to manual?





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







0















Here are my vectors:



lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 0.688 0.317


lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 2.94 0.324


or for simplicity:



a <- c(.688,.317) 
b <- c(2.94, .324)


I want to compute tcR::cosine.similarity:



cosine.similarity(a,b, .do.norm = T) gives me 1.388816


If I will do it myself according to Wikipedia:



sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2))) 


And I get 0.948604 so what is different here?
Please advise. I suppose it is the normalization but will be happy for your help.










share|improve this question





























    0















    Here are my vectors:



    lin_acc_mag_mean vel_ang_unc_mag_mean
    <dbl> <dbl>
    1 0.688 0.317


    lin_acc_mag_mean vel_ang_unc_mag_mean
    <dbl> <dbl>
    1 2.94 0.324


    or for simplicity:



    a <- c(.688,.317) 
    b <- c(2.94, .324)


    I want to compute tcR::cosine.similarity:



    cosine.similarity(a,b, .do.norm = T) gives me 1.388816


    If I will do it myself according to Wikipedia:



    sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2))) 


    And I get 0.948604 so what is different here?
    Please advise. I suppose it is the normalization but will be happy for your help.










    share|improve this question

























      0












      0








      0








      Here are my vectors:



      lin_acc_mag_mean vel_ang_unc_mag_mean
      <dbl> <dbl>
      1 0.688 0.317


      lin_acc_mag_mean vel_ang_unc_mag_mean
      <dbl> <dbl>
      1 2.94 0.324


      or for simplicity:



      a <- c(.688,.317) 
      b <- c(2.94, .324)


      I want to compute tcR::cosine.similarity:



      cosine.similarity(a,b, .do.norm = T) gives me 1.388816


      If I will do it myself according to Wikipedia:



      sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2))) 


      And I get 0.948604 so what is different here?
      Please advise. I suppose it is the normalization but will be happy for your help.










      share|improve this question














      Here are my vectors:



      lin_acc_mag_mean vel_ang_unc_mag_mean
      <dbl> <dbl>
      1 0.688 0.317


      lin_acc_mag_mean vel_ang_unc_mag_mean
      <dbl> <dbl>
      1 2.94 0.324


      or for simplicity:



      a <- c(.688,.317) 
      b <- c(2.94, .324)


      I want to compute tcR::cosine.similarity:



      cosine.similarity(a,b, .do.norm = T) gives me 1.388816


      If I will do it myself according to Wikipedia:



      sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2))) 


      And I get 0.948604 so what is different here?
      Please advise. I suppose it is the normalization but will be happy for your help.







      r cosine-similarity






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 26 '18 at 15:42









      SteveSSteveS

      666311




      666311
























          1 Answer
          1






          active

          oldest

          votes


















          1














          In the tcR package the cosine.similarity function contains the following:



          function (.alpha, .beta, .do.norm = NA, .laplace = 0) 
          {
          .alpha <- check.distribution(.alpha, .do.norm, .laplace)
          .beta <- check.distribution(.beta, .do.norm, .laplace)
          sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
          }


          The intervening check.distribution calculation returns a vector that sums to 1, but does not appear to be normalized.



          I'd recommend using the cosine function in the lsa package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a)) yields the following:



                   a        b        b        a
          a 1.000000 0.948604 0.948604 1.000000
          b 0.948604 1.000000 1.000000 0.948604
          b 0.948604 1.000000 1.000000 0.948604
          a 1.000000 0.948604 0.948604 1.000000





          share|improve this answer
























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53484571%2fcomputing-cosine-similarity-in-r-gives-different-results-compared-to-manual%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            In the tcR package the cosine.similarity function contains the following:



            function (.alpha, .beta, .do.norm = NA, .laplace = 0) 
            {
            .alpha <- check.distribution(.alpha, .do.norm, .laplace)
            .beta <- check.distribution(.beta, .do.norm, .laplace)
            sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
            }


            The intervening check.distribution calculation returns a vector that sums to 1, but does not appear to be normalized.



            I'd recommend using the cosine function in the lsa package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a)) yields the following:



                     a        b        b        a
            a 1.000000 0.948604 0.948604 1.000000
            b 0.948604 1.000000 1.000000 0.948604
            b 0.948604 1.000000 1.000000 0.948604
            a 1.000000 0.948604 0.948604 1.000000





            share|improve this answer




























              1














              In the tcR package the cosine.similarity function contains the following:



              function (.alpha, .beta, .do.norm = NA, .laplace = 0) 
              {
              .alpha <- check.distribution(.alpha, .do.norm, .laplace)
              .beta <- check.distribution(.beta, .do.norm, .laplace)
              sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
              }


              The intervening check.distribution calculation returns a vector that sums to 1, but does not appear to be normalized.



              I'd recommend using the cosine function in the lsa package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a)) yields the following:



                       a        b        b        a
              a 1.000000 0.948604 0.948604 1.000000
              b 0.948604 1.000000 1.000000 0.948604
              b 0.948604 1.000000 1.000000 0.948604
              a 1.000000 0.948604 0.948604 1.000000





              share|improve this answer


























                1












                1








                1







                In the tcR package the cosine.similarity function contains the following:



                function (.alpha, .beta, .do.norm = NA, .laplace = 0) 
                {
                .alpha <- check.distribution(.alpha, .do.norm, .laplace)
                .beta <- check.distribution(.beta, .do.norm, .laplace)
                sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
                }


                The intervening check.distribution calculation returns a vector that sums to 1, but does not appear to be normalized.



                I'd recommend using the cosine function in the lsa package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a)) yields the following:



                         a        b        b        a
                a 1.000000 0.948604 0.948604 1.000000
                b 0.948604 1.000000 1.000000 0.948604
                b 0.948604 1.000000 1.000000 0.948604
                a 1.000000 0.948604 0.948604 1.000000





                share|improve this answer













                In the tcR package the cosine.similarity function contains the following:



                function (.alpha, .beta, .do.norm = NA, .laplace = 0) 
                {
                .alpha <- check.distribution(.alpha, .do.norm, .laplace)
                .beta <- check.distribution(.beta, .do.norm, .laplace)
                sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
                }


                The intervening check.distribution calculation returns a vector that sums to 1, but does not appear to be normalized.



                I'd recommend using the cosine function in the lsa package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a)) yields the following:



                         a        b        b        a
                a 1.000000 0.948604 0.948604 1.000000
                b 0.948604 1.000000 1.000000 0.948604
                b 0.948604 1.000000 1.000000 0.948604
                a 1.000000 0.948604 0.948604 1.000000






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 26 '18 at 19:48









                Edward CarneyEdward Carney

                1,15456




                1,15456
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53484571%2fcomputing-cosine-similarity-in-r-gives-different-results-compared-to-manual%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen