Proving $ frac{csc x + cot x}{tan x + sin x} = cot xcsc x $
I am currently working on understanding trig identities.
A question has me stumped, and no matter how I look at it, it never leads to the proof. I believe I am making a mistake when dividing multiple fractions.
$$ frac{csc x + cot x}{tan x + sin x} = cot xcsc x $$
For my first step I break up the $csc x$ and $cot x$ in the numerator and add them together to make:
$$frac{frac{1+cos x}{sin xcos x}}{tan x+sin x}$$
I then simplify further and end up at:
$$ frac{cos x+cos^2 x}{sin^2 xcos^2 x} $$
From here on I don't see any identities, or possible ways to decompose this further.
trigonometry problem-solving
add a comment |
I am currently working on understanding trig identities.
A question has me stumped, and no matter how I look at it, it never leads to the proof. I believe I am making a mistake when dividing multiple fractions.
$$ frac{csc x + cot x}{tan x + sin x} = cot xcsc x $$
For my first step I break up the $csc x$ and $cot x$ in the numerator and add them together to make:
$$frac{frac{1+cos x}{sin xcos x}}{tan x+sin x}$$
I then simplify further and end up at:
$$ frac{cos x+cos^2 x}{sin^2 xcos^2 x} $$
From here on I don't see any identities, or possible ways to decompose this further.
trigonometry problem-solving
2
Note that $csc x + cot x = dfrac{1}{sin x} + dfrac{cos x}{sin x} = dfrac{1 + cos x}{sin x}$
– Chaitanya Tappu
Nov 30 at 2:29
add a comment |
I am currently working on understanding trig identities.
A question has me stumped, and no matter how I look at it, it never leads to the proof. I believe I am making a mistake when dividing multiple fractions.
$$ frac{csc x + cot x}{tan x + sin x} = cot xcsc x $$
For my first step I break up the $csc x$ and $cot x$ in the numerator and add them together to make:
$$frac{frac{1+cos x}{sin xcos x}}{tan x+sin x}$$
I then simplify further and end up at:
$$ frac{cos x+cos^2 x}{sin^2 xcos^2 x} $$
From here on I don't see any identities, or possible ways to decompose this further.
trigonometry problem-solving
I am currently working on understanding trig identities.
A question has me stumped, and no matter how I look at it, it never leads to the proof. I believe I am making a mistake when dividing multiple fractions.
$$ frac{csc x + cot x}{tan x + sin x} = cot xcsc x $$
For my first step I break up the $csc x$ and $cot x$ in the numerator and add them together to make:
$$frac{frac{1+cos x}{sin xcos x}}{tan x+sin x}$$
I then simplify further and end up at:
$$ frac{cos x+cos^2 x}{sin^2 xcos^2 x} $$
From here on I don't see any identities, or possible ways to decompose this further.
trigonometry problem-solving
trigonometry problem-solving
edited Nov 30 at 5:06
Blue
47.6k870151
47.6k870151
asked Nov 30 at 2:20
Rawley Fowler
47116
47116
2
Note that $csc x + cot x = dfrac{1}{sin x} + dfrac{cos x}{sin x} = dfrac{1 + cos x}{sin x}$
– Chaitanya Tappu
Nov 30 at 2:29
add a comment |
2
Note that $csc x + cot x = dfrac{1}{sin x} + dfrac{cos x}{sin x} = dfrac{1 + cos x}{sin x}$
– Chaitanya Tappu
Nov 30 at 2:29
2
2
Note that $csc x + cot x = dfrac{1}{sin x} + dfrac{cos x}{sin x} = dfrac{1 + cos x}{sin x}$
– Chaitanya Tappu
Nov 30 at 2:29
Note that $csc x + cot x = dfrac{1}{sin x} + dfrac{cos x}{sin x} = dfrac{1 + cos x}{sin x}$
– Chaitanya Tappu
Nov 30 at 2:29
add a comment |
2 Answers
2
active
oldest
votes
$require{cancel}$
As Chaitanya Tappu noted, you made a mistake when adding $csc x$ and $cot x$.
$$frac{csc x+cot x}{tan x+sin x}=frac{frac{1}{sin x}+frac{cos }{sin x}}{frac{sin x}{cos x}+frac{sin xcos x}{cos x}}=frac{frac{1+cos x}{sin x}}{frac{sin x(1+cos x)}{cos x}}=frac{cancel{1+cos x}}{sin x}cdotfrac{cos x}{sin xcancel{(1+cos x)}}$$
$$=frac{cos x}{sin x}cdotfrac{1}{sin x}=cot xcsc x$$
1
you beat me to it. (+1)
– clathratus
Nov 30 at 2:37
add a comment |
$$dfrac{a+b}{dfrac1a+dfrac1b}=cdots=ab$$ for $a+bne0$
$tan x=dfrac1?,sin x=dfrac1?$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019535%2fproving-frac-csc-x-cot-x-tan-x-sin-x-cot-x-csc-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$require{cancel}$
As Chaitanya Tappu noted, you made a mistake when adding $csc x$ and $cot x$.
$$frac{csc x+cot x}{tan x+sin x}=frac{frac{1}{sin x}+frac{cos }{sin x}}{frac{sin x}{cos x}+frac{sin xcos x}{cos x}}=frac{frac{1+cos x}{sin x}}{frac{sin x(1+cos x)}{cos x}}=frac{cancel{1+cos x}}{sin x}cdotfrac{cos x}{sin xcancel{(1+cos x)}}$$
$$=frac{cos x}{sin x}cdotfrac{1}{sin x}=cot xcsc x$$
1
you beat me to it. (+1)
– clathratus
Nov 30 at 2:37
add a comment |
$require{cancel}$
As Chaitanya Tappu noted, you made a mistake when adding $csc x$ and $cot x$.
$$frac{csc x+cot x}{tan x+sin x}=frac{frac{1}{sin x}+frac{cos }{sin x}}{frac{sin x}{cos x}+frac{sin xcos x}{cos x}}=frac{frac{1+cos x}{sin x}}{frac{sin x(1+cos x)}{cos x}}=frac{cancel{1+cos x}}{sin x}cdotfrac{cos x}{sin xcancel{(1+cos x)}}$$
$$=frac{cos x}{sin x}cdotfrac{1}{sin x}=cot xcsc x$$
1
you beat me to it. (+1)
– clathratus
Nov 30 at 2:37
add a comment |
$require{cancel}$
As Chaitanya Tappu noted, you made a mistake when adding $csc x$ and $cot x$.
$$frac{csc x+cot x}{tan x+sin x}=frac{frac{1}{sin x}+frac{cos }{sin x}}{frac{sin x}{cos x}+frac{sin xcos x}{cos x}}=frac{frac{1+cos x}{sin x}}{frac{sin x(1+cos x)}{cos x}}=frac{cancel{1+cos x}}{sin x}cdotfrac{cos x}{sin xcancel{(1+cos x)}}$$
$$=frac{cos x}{sin x}cdotfrac{1}{sin x}=cot xcsc x$$
$require{cancel}$
As Chaitanya Tappu noted, you made a mistake when adding $csc x$ and $cot x$.
$$frac{csc x+cot x}{tan x+sin x}=frac{frac{1}{sin x}+frac{cos }{sin x}}{frac{sin x}{cos x}+frac{sin xcos x}{cos x}}=frac{frac{1+cos x}{sin x}}{frac{sin x(1+cos x)}{cos x}}=frac{cancel{1+cos x}}{sin x}cdotfrac{cos x}{sin xcancel{(1+cos x)}}$$
$$=frac{cos x}{sin x}cdotfrac{1}{sin x}=cot xcsc x$$
edited Dec 7 at 12:42
answered Nov 30 at 2:34
Robert Howard
1,9161822
1,9161822
1
you beat me to it. (+1)
– clathratus
Nov 30 at 2:37
add a comment |
1
you beat me to it. (+1)
– clathratus
Nov 30 at 2:37
1
1
you beat me to it. (+1)
– clathratus
Nov 30 at 2:37
you beat me to it. (+1)
– clathratus
Nov 30 at 2:37
add a comment |
$$dfrac{a+b}{dfrac1a+dfrac1b}=cdots=ab$$ for $a+bne0$
$tan x=dfrac1?,sin x=dfrac1?$
add a comment |
$$dfrac{a+b}{dfrac1a+dfrac1b}=cdots=ab$$ for $a+bne0$
$tan x=dfrac1?,sin x=dfrac1?$
add a comment |
$$dfrac{a+b}{dfrac1a+dfrac1b}=cdots=ab$$ for $a+bne0$
$tan x=dfrac1?,sin x=dfrac1?$
$$dfrac{a+b}{dfrac1a+dfrac1b}=cdots=ab$$ for $a+bne0$
$tan x=dfrac1?,sin x=dfrac1?$
answered Nov 30 at 3:52
lab bhattacharjee
222k15156274
222k15156274
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019535%2fproving-frac-csc-x-cot-x-tan-x-sin-x-cot-x-csc-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
Note that $csc x + cot x = dfrac{1}{sin x} + dfrac{cos x}{sin x} = dfrac{1 + cos x}{sin x}$
– Chaitanya Tappu
Nov 30 at 2:29