Some weird results in complex number computing
$begingroup$
The question I met is to show that if $z=cos (theta)+isin(theta)$ with $i=sqrt{-1}$,then $ Re(frac{z-1}{z+1})=0$
In the normal way, we found that: $$frac{z-1}{z+1}=frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}\
=frac{bigl(cos(theta)-1+isin(theta)bigl)bigl(cos(theta)+1-isin(theta)bigl)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{cos^2(theta)+cos(theta)-cos(theta)-1+sin^2(theta)+2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}$$
So $Re(frac{z-1}{z+1})=0$
If we do it in another way:
$$
frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}=frac{-2sin^2(frac{theta}{2})+2icos(frac{theta}{2})sin(frac{theta}{2})}{2cos^2(frac{theta}{2})+2isin(frac{theta}{2})cos(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{sin(frac{theta}{2})-icos(frac{theta}{2})}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)
$$
So the real part of it will be $-tan(frac{theta}{2})cos(-theta-frac{pi}{2})$ which is not $0$.
Which step I made mistake or they are equivalent?
complex-numbers
$endgroup$
|
show 1 more comment
$begingroup$
The question I met is to show that if $z=cos (theta)+isin(theta)$ with $i=sqrt{-1}$,then $ Re(frac{z-1}{z+1})=0$
In the normal way, we found that: $$frac{z-1}{z+1}=frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}\
=frac{bigl(cos(theta)-1+isin(theta)bigl)bigl(cos(theta)+1-isin(theta)bigl)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{cos^2(theta)+cos(theta)-cos(theta)-1+sin^2(theta)+2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}$$
So $Re(frac{z-1}{z+1})=0$
If we do it in another way:
$$
frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}=frac{-2sin^2(frac{theta}{2})+2icos(frac{theta}{2})sin(frac{theta}{2})}{2cos^2(frac{theta}{2})+2isin(frac{theta}{2})cos(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{sin(frac{theta}{2})-icos(frac{theta}{2})}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)
$$
So the real part of it will be $-tan(frac{theta}{2})cos(-theta-frac{pi}{2})$ which is not $0$.
Which step I made mistake or they are equivalent?
complex-numbers
$endgroup$
$begingroup$
There must be a sign error, the $theta$ should simplify instead, and the fraction turn to $e^{ipi/2}$.
$endgroup$
– Yves Daoust
Jan 8 at 9:44
$begingroup$
Demoivre's theory, the arguments of two complex number are added.
$endgroup$
– yuanming luo
Jan 8 at 9:47
$begingroup$
How did you get from $$-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}$$ to $$-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)?$$
$endgroup$
– 5xum
Jan 8 at 9:55
$begingroup$
@5xum That's what I asked earlier, and the OP's comment above is about. It's simply subtraction of angles, from dividing unit length complex numbers by one another.
$endgroup$
– Arthur
Jan 8 at 9:56
$begingroup$
@Arthur " That's what I asked earlier"... I don't see your question anywhere...
$endgroup$
– 5xum
Jan 8 at 9:58
|
show 1 more comment
$begingroup$
The question I met is to show that if $z=cos (theta)+isin(theta)$ with $i=sqrt{-1}$,then $ Re(frac{z-1}{z+1})=0$
In the normal way, we found that: $$frac{z-1}{z+1}=frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}\
=frac{bigl(cos(theta)-1+isin(theta)bigl)bigl(cos(theta)+1-isin(theta)bigl)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{cos^2(theta)+cos(theta)-cos(theta)-1+sin^2(theta)+2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}$$
So $Re(frac{z-1}{z+1})=0$
If we do it in another way:
$$
frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}=frac{-2sin^2(frac{theta}{2})+2icos(frac{theta}{2})sin(frac{theta}{2})}{2cos^2(frac{theta}{2})+2isin(frac{theta}{2})cos(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{sin(frac{theta}{2})-icos(frac{theta}{2})}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)
$$
So the real part of it will be $-tan(frac{theta}{2})cos(-theta-frac{pi}{2})$ which is not $0$.
Which step I made mistake or they are equivalent?
complex-numbers
$endgroup$
The question I met is to show that if $z=cos (theta)+isin(theta)$ with $i=sqrt{-1}$,then $ Re(frac{z-1}{z+1})=0$
In the normal way, we found that: $$frac{z-1}{z+1}=frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}\
=frac{bigl(cos(theta)-1+isin(theta)bigl)bigl(cos(theta)+1-isin(theta)bigl)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{cos^2(theta)+cos(theta)-cos(theta)-1+sin^2(theta)+2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}\
=frac{2isin(theta)}{bigl(cos(theta)+1bigl)^2+sin^2(theta)}$$
So $Re(frac{z-1}{z+1})=0$
If we do it in another way:
$$
frac{cos(theta)-1+isin(theta)}{cos(theta)+1+isin(theta)}=frac{-2sin^2(frac{theta}{2})+2icos(frac{theta}{2})sin(frac{theta}{2})}{2cos^2(frac{theta}{2})+2isin(frac{theta}{2})cos(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{sin(frac{theta}{2})-icos(frac{theta}{2})}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}\
=-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)
$$
So the real part of it will be $-tan(frac{theta}{2})cos(-theta-frac{pi}{2})$ which is not $0$.
Which step I made mistake or they are equivalent?
complex-numbers
complex-numbers
edited Jan 8 at 9:47
yuanming luo
asked Jan 8 at 9:38
yuanming luoyuanming luo
10211
10211
$begingroup$
There must be a sign error, the $theta$ should simplify instead, and the fraction turn to $e^{ipi/2}$.
$endgroup$
– Yves Daoust
Jan 8 at 9:44
$begingroup$
Demoivre's theory, the arguments of two complex number are added.
$endgroup$
– yuanming luo
Jan 8 at 9:47
$begingroup$
How did you get from $$-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}$$ to $$-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)?$$
$endgroup$
– 5xum
Jan 8 at 9:55
$begingroup$
@5xum That's what I asked earlier, and the OP's comment above is about. It's simply subtraction of angles, from dividing unit length complex numbers by one another.
$endgroup$
– Arthur
Jan 8 at 9:56
$begingroup$
@Arthur " That's what I asked earlier"... I don't see your question anywhere...
$endgroup$
– 5xum
Jan 8 at 9:58
|
show 1 more comment
$begingroup$
There must be a sign error, the $theta$ should simplify instead, and the fraction turn to $e^{ipi/2}$.
$endgroup$
– Yves Daoust
Jan 8 at 9:44
$begingroup$
Demoivre's theory, the arguments of two complex number are added.
$endgroup$
– yuanming luo
Jan 8 at 9:47
$begingroup$
How did you get from $$-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}$$ to $$-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)?$$
$endgroup$
– 5xum
Jan 8 at 9:55
$begingroup$
@5xum That's what I asked earlier, and the OP's comment above is about. It's simply subtraction of angles, from dividing unit length complex numbers by one another.
$endgroup$
– Arthur
Jan 8 at 9:56
$begingroup$
@Arthur " That's what I asked earlier"... I don't see your question anywhere...
$endgroup$
– 5xum
Jan 8 at 9:58
$begingroup$
There must be a sign error, the $theta$ should simplify instead, and the fraction turn to $e^{ipi/2}$.
$endgroup$
– Yves Daoust
Jan 8 at 9:44
$begingroup$
There must be a sign error, the $theta$ should simplify instead, and the fraction turn to $e^{ipi/2}$.
$endgroup$
– Yves Daoust
Jan 8 at 9:44
$begingroup$
Demoivre's theory, the arguments of two complex number are added.
$endgroup$
– yuanming luo
Jan 8 at 9:47
$begingroup$
Demoivre's theory, the arguments of two complex number are added.
$endgroup$
– yuanming luo
Jan 8 at 9:47
$begingroup$
How did you get from $$-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}$$ to $$-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)?$$
$endgroup$
– 5xum
Jan 8 at 9:55
$begingroup$
How did you get from $$-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}$$ to $$-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)?$$
$endgroup$
– 5xum
Jan 8 at 9:55
$begingroup$
@5xum That's what I asked earlier, and the OP's comment above is about. It's simply subtraction of angles, from dividing unit length complex numbers by one another.
$endgroup$
– Arthur
Jan 8 at 9:56
$begingroup$
@5xum That's what I asked earlier, and the OP's comment above is about. It's simply subtraction of angles, from dividing unit length complex numbers by one another.
$endgroup$
– Arthur
Jan 8 at 9:56
$begingroup$
@Arthur " That's what I asked earlier"... I don't see your question anywhere...
$endgroup$
– 5xum
Jan 8 at 9:58
$begingroup$
@Arthur " That's what I asked earlier"... I don't see your question anywhere...
$endgroup$
– 5xum
Jan 8 at 9:58
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
You should be more careful when applying transformations of sines into cosines.
It's much easier than that:
$$
sinfrac{theta}{2}-icosfrac{theta}{2}=
ileft(cosfrac{theta}{2}+isinfrac{theta}{2}right)
$$
You could write this in trigonometric form
$$
=left(cosfrac{pi}{2}+isinfrac{pi}{2}right)
left(cosfrac{theta}{2}+isinfrac{theta}{2}right)
=cosleft(frac{theta}{2}+frac{pi}{2}right)+
isinleft(frac{theta}{2}+frac{pi}{2}right)
$$
and now you can go and chase for your mistake.
Another way to do the same: the conjugate of your number $w=frac{z-1}{z+1}$ is
$$
bar{w}=frac{bar{z}-1}{bar{z}+1}
$$
but, since $|z|=1$, we have $bar{z}=z^{-1}$; therefore
$$
bar{w}=frac{z^{-1}-1}{z^{-1}+1}=frac{1-z}{1+z}=-w
$$
From $bar{w}=-w$ it follows that $operatorname{Re}(w)=0$.
If you want to find the imaginary part in term of $theta$, you can consider $z=u^2$, where $u=cos(theta/2)+isin(theta/2)$; then
$$
w=frac{z-1}{z+1}=frac{u^2-1}{u^2+1}=frac{u-u^{-1}}{u+u^{-1}}
=frac{u-bar{u}}{u+bar{u}}=
frac{2isin(theta/2)}{2cos(theta/2)}=itanfrac{theta}{2}
$$
$endgroup$
add a comment |
$begingroup$
We have
$$
sinleft(fractheta2right) - icosleft(fractheta2right) = -sinleft(-fractheta2right) - icosleft(fractheta2right)\
= -cosleft(-fractheta2-fracpi2right) - isinleft(fractheta2 + fracpi2right)\
= -left(cosleft(fractheta2 + fracpi2right) + isinleft(fractheta2 + fracpi2right)right)
$$
so you have a sign error in the numerator between line 2 and line 3 of your alternate approach.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065975%2fsome-weird-results-in-complex-number-computing%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You should be more careful when applying transformations of sines into cosines.
It's much easier than that:
$$
sinfrac{theta}{2}-icosfrac{theta}{2}=
ileft(cosfrac{theta}{2}+isinfrac{theta}{2}right)
$$
You could write this in trigonometric form
$$
=left(cosfrac{pi}{2}+isinfrac{pi}{2}right)
left(cosfrac{theta}{2}+isinfrac{theta}{2}right)
=cosleft(frac{theta}{2}+frac{pi}{2}right)+
isinleft(frac{theta}{2}+frac{pi}{2}right)
$$
and now you can go and chase for your mistake.
Another way to do the same: the conjugate of your number $w=frac{z-1}{z+1}$ is
$$
bar{w}=frac{bar{z}-1}{bar{z}+1}
$$
but, since $|z|=1$, we have $bar{z}=z^{-1}$; therefore
$$
bar{w}=frac{z^{-1}-1}{z^{-1}+1}=frac{1-z}{1+z}=-w
$$
From $bar{w}=-w$ it follows that $operatorname{Re}(w)=0$.
If you want to find the imaginary part in term of $theta$, you can consider $z=u^2$, where $u=cos(theta/2)+isin(theta/2)$; then
$$
w=frac{z-1}{z+1}=frac{u^2-1}{u^2+1}=frac{u-u^{-1}}{u+u^{-1}}
=frac{u-bar{u}}{u+bar{u}}=
frac{2isin(theta/2)}{2cos(theta/2)}=itanfrac{theta}{2}
$$
$endgroup$
add a comment |
$begingroup$
You should be more careful when applying transformations of sines into cosines.
It's much easier than that:
$$
sinfrac{theta}{2}-icosfrac{theta}{2}=
ileft(cosfrac{theta}{2}+isinfrac{theta}{2}right)
$$
You could write this in trigonometric form
$$
=left(cosfrac{pi}{2}+isinfrac{pi}{2}right)
left(cosfrac{theta}{2}+isinfrac{theta}{2}right)
=cosleft(frac{theta}{2}+frac{pi}{2}right)+
isinleft(frac{theta}{2}+frac{pi}{2}right)
$$
and now you can go and chase for your mistake.
Another way to do the same: the conjugate of your number $w=frac{z-1}{z+1}$ is
$$
bar{w}=frac{bar{z}-1}{bar{z}+1}
$$
but, since $|z|=1$, we have $bar{z}=z^{-1}$; therefore
$$
bar{w}=frac{z^{-1}-1}{z^{-1}+1}=frac{1-z}{1+z}=-w
$$
From $bar{w}=-w$ it follows that $operatorname{Re}(w)=0$.
If you want to find the imaginary part in term of $theta$, you can consider $z=u^2$, where $u=cos(theta/2)+isin(theta/2)$; then
$$
w=frac{z-1}{z+1}=frac{u^2-1}{u^2+1}=frac{u-u^{-1}}{u+u^{-1}}
=frac{u-bar{u}}{u+bar{u}}=
frac{2isin(theta/2)}{2cos(theta/2)}=itanfrac{theta}{2}
$$
$endgroup$
add a comment |
$begingroup$
You should be more careful when applying transformations of sines into cosines.
It's much easier than that:
$$
sinfrac{theta}{2}-icosfrac{theta}{2}=
ileft(cosfrac{theta}{2}+isinfrac{theta}{2}right)
$$
You could write this in trigonometric form
$$
=left(cosfrac{pi}{2}+isinfrac{pi}{2}right)
left(cosfrac{theta}{2}+isinfrac{theta}{2}right)
=cosleft(frac{theta}{2}+frac{pi}{2}right)+
isinleft(frac{theta}{2}+frac{pi}{2}right)
$$
and now you can go and chase for your mistake.
Another way to do the same: the conjugate of your number $w=frac{z-1}{z+1}$ is
$$
bar{w}=frac{bar{z}-1}{bar{z}+1}
$$
but, since $|z|=1$, we have $bar{z}=z^{-1}$; therefore
$$
bar{w}=frac{z^{-1}-1}{z^{-1}+1}=frac{1-z}{1+z}=-w
$$
From $bar{w}=-w$ it follows that $operatorname{Re}(w)=0$.
If you want to find the imaginary part in term of $theta$, you can consider $z=u^2$, where $u=cos(theta/2)+isin(theta/2)$; then
$$
w=frac{z-1}{z+1}=frac{u^2-1}{u^2+1}=frac{u-u^{-1}}{u+u^{-1}}
=frac{u-bar{u}}{u+bar{u}}=
frac{2isin(theta/2)}{2cos(theta/2)}=itanfrac{theta}{2}
$$
$endgroup$
You should be more careful when applying transformations of sines into cosines.
It's much easier than that:
$$
sinfrac{theta}{2}-icosfrac{theta}{2}=
ileft(cosfrac{theta}{2}+isinfrac{theta}{2}right)
$$
You could write this in trigonometric form
$$
=left(cosfrac{pi}{2}+isinfrac{pi}{2}right)
left(cosfrac{theta}{2}+isinfrac{theta}{2}right)
=cosleft(frac{theta}{2}+frac{pi}{2}right)+
isinleft(frac{theta}{2}+frac{pi}{2}right)
$$
and now you can go and chase for your mistake.
Another way to do the same: the conjugate of your number $w=frac{z-1}{z+1}$ is
$$
bar{w}=frac{bar{z}-1}{bar{z}+1}
$$
but, since $|z|=1$, we have $bar{z}=z^{-1}$; therefore
$$
bar{w}=frac{z^{-1}-1}{z^{-1}+1}=frac{1-z}{1+z}=-w
$$
From $bar{w}=-w$ it follows that $operatorname{Re}(w)=0$.
If you want to find the imaginary part in term of $theta$, you can consider $z=u^2$, where $u=cos(theta/2)+isin(theta/2)$; then
$$
w=frac{z-1}{z+1}=frac{u^2-1}{u^2+1}=frac{u-u^{-1}}{u+u^{-1}}
=frac{u-bar{u}}{u+bar{u}}=
frac{2isin(theta/2)}{2cos(theta/2)}=itanfrac{theta}{2}
$$
answered Jan 8 at 10:05
egregegreg
186k1486208
186k1486208
add a comment |
add a comment |
$begingroup$
We have
$$
sinleft(fractheta2right) - icosleft(fractheta2right) = -sinleft(-fractheta2right) - icosleft(fractheta2right)\
= -cosleft(-fractheta2-fracpi2right) - isinleft(fractheta2 + fracpi2right)\
= -left(cosleft(fractheta2 + fracpi2right) + isinleft(fractheta2 + fracpi2right)right)
$$
so you have a sign error in the numerator between line 2 and line 3 of your alternate approach.
$endgroup$
add a comment |
$begingroup$
We have
$$
sinleft(fractheta2right) - icosleft(fractheta2right) = -sinleft(-fractheta2right) - icosleft(fractheta2right)\
= -cosleft(-fractheta2-fracpi2right) - isinleft(fractheta2 + fracpi2right)\
= -left(cosleft(fractheta2 + fracpi2right) + isinleft(fractheta2 + fracpi2right)right)
$$
so you have a sign error in the numerator between line 2 and line 3 of your alternate approach.
$endgroup$
add a comment |
$begingroup$
We have
$$
sinleft(fractheta2right) - icosleft(fractheta2right) = -sinleft(-fractheta2right) - icosleft(fractheta2right)\
= -cosleft(-fractheta2-fracpi2right) - isinleft(fractheta2 + fracpi2right)\
= -left(cosleft(fractheta2 + fracpi2right) + isinleft(fractheta2 + fracpi2right)right)
$$
so you have a sign error in the numerator between line 2 and line 3 of your alternate approach.
$endgroup$
We have
$$
sinleft(fractheta2right) - icosleft(fractheta2right) = -sinleft(-fractheta2right) - icosleft(fractheta2right)\
= -cosleft(-fractheta2-fracpi2right) - isinleft(fractheta2 + fracpi2right)\
= -left(cosleft(fractheta2 + fracpi2right) + isinleft(fractheta2 + fracpi2right)right)
$$
so you have a sign error in the numerator between line 2 and line 3 of your alternate approach.
answered Jan 8 at 9:56
ArthurArthur
123k7122211
123k7122211
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065975%2fsome-weird-results-in-complex-number-computing%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
There must be a sign error, the $theta$ should simplify instead, and the fraction turn to $e^{ipi/2}$.
$endgroup$
– Yves Daoust
Jan 8 at 9:44
$begingroup$
Demoivre's theory, the arguments of two complex number are added.
$endgroup$
– yuanming luo
Jan 8 at 9:47
$begingroup$
How did you get from $$-tan(frac{theta}{2})frac{cosbigl(-(frac{theta}{2}+frac{pi}{2})big)+isinbigl(-(frac{theta}{2}+frac{pi}{2})big)}{cos(frac{theta}{2})+isin(frac{theta}{2})}$$ to $$-tan(frac{theta}{2})bigl(cos(-theta-frac{pi}{2})+isin(-theta-frac{pi}{2})bigl)?$$
$endgroup$
– 5xum
Jan 8 at 9:55
$begingroup$
@5xum That's what I asked earlier, and the OP's comment above is about. It's simply subtraction of angles, from dividing unit length complex numbers by one another.
$endgroup$
– Arthur
Jan 8 at 9:56
$begingroup$
@Arthur " That's what I asked earlier"... I don't see your question anywhere...
$endgroup$
– 5xum
Jan 8 at 9:58