AKS - proving that $frac{n}{p}$ is introspective
I have a problem with showing that $frac{n}{p}$ is introspective.
Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.
First of all, recall the following definitions and facts
$pmid n$ is a prime number and $p>r>1$.- $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$
- $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$
- $forall 1leq aleq r:X+ain mathcal{P}_n$
- $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$
- $p,nin mathcal{G}$
We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following
begin{align*}
fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
& equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
& stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
& equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
end{align*}
Explanations
$pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$
- $X^r-1mid X^{frac{n}{p}cdot r}-1$
- $ninmathcal{G}$
Concluding we get that
$$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
$$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
However, $R$ is not an integral domain so we cannot deduce that
$$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$
Please help, they say in the paper that it follows immediately and I do not understands why.
Edit: I have also noted that
$$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$
Note: The version of the paper that I work with
https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
number-theory proof-verification primality-test
add a comment |
I have a problem with showing that $frac{n}{p}$ is introspective.
Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.
First of all, recall the following definitions and facts
$pmid n$ is a prime number and $p>r>1$.- $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$
- $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$
- $forall 1leq aleq r:X+ain mathcal{P}_n$
- $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$
- $p,nin mathcal{G}$
We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following
begin{align*}
fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
& equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
& stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
& equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
end{align*}
Explanations
$pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$
- $X^r-1mid X^{frac{n}{p}cdot r}-1$
- $ninmathcal{G}$
Concluding we get that
$$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
$$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
However, $R$ is not an integral domain so we cannot deduce that
$$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$
Please help, they say in the paper that it follows immediately and I do not understands why.
Edit: I have also noted that
$$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$
Note: The version of the paper that I work with
https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
number-theory proof-verification primality-test
add a comment |
I have a problem with showing that $frac{n}{p}$ is introspective.
Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.
First of all, recall the following definitions and facts
$pmid n$ is a prime number and $p>r>1$.- $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$
- $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$
- $forall 1leq aleq r:X+ain mathcal{P}_n$
- $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$
- $p,nin mathcal{G}$
We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following
begin{align*}
fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
& equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
& stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
& equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
end{align*}
Explanations
$pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$
- $X^r-1mid X^{frac{n}{p}cdot r}-1$
- $ninmathcal{G}$
Concluding we get that
$$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
$$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
However, $R$ is not an integral domain so we cannot deduce that
$$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$
Please help, they say in the paper that it follows immediately and I do not understands why.
Edit: I have also noted that
$$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$
Note: The version of the paper that I work with
https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
number-theory proof-verification primality-test
I have a problem with showing that $frac{n}{p}$ is introspective.
Recall that we are in state where a composite integer $n$ fools the AKS test and $pmid n$ a prime number.
First of all, recall the following definitions and facts
$pmid n$ is a prime number and $p>r>1$.- $Rstackrel{text{def}}{=}mathbb{F}_p[X]pmod{X^r-1}$
- $mathcal{P}_nstackrel{text{def}}{=}{fin R | f(X^n)=_Rf(X)^n}$
- $forall 1leq aleq r:X+ain mathcal{P}_n$
- $mathcal{G}stackrel{text{def}}{=}{iinmathbb{N} | (i,r)=1wedge forall finmathcal{P}_n:f(X^i)=_Rf(X)^i}$
- $p,nin mathcal{G}$
We wish to show that $frac{n}{p}in mathcal{G}$. Let $finmathcal{P}_n$ and observe the following
begin{align*}
fbig(X^{frac{n}{p}}big)^p & stackrel{(1)}{equiv} fBig(big(X^{frac{n}{p}}big)^pBig) & pmod{big(X^{frac{n}{p}}big)^r-1,p}\
& equiv f(X^n) & pmod{X^{frac{n}{p}cdot r}-1,p}\
fbig(X^{frac{n}{p}}big)^p & stackrel{(2)}{equiv} f(X^n) & pmod{X^r-1,p}\
& stackrel{(3)}{equiv} f(X)^n & pmod{X^r-1,p}\
& equiv big(f(X)^{frac{n}{p}}big)^p & pmod{X^r-1,p}
end{align*}
Explanations
$pinmathcal{G}$ and using the identity w.r.t. the vairable $Y=X^{frac{n}{p}}$
- $X^r-1mid X^{frac{n}{p}cdot r}-1$
- $ninmathcal{G}$
Concluding we get that
$$fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
But, $p>r>1$ all natural numbers, so $p>2$ and in particular it is an odd prime. Therefore
$$Big(fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}Big)^p=fbig(X^{frac{n}{p}}big)^p+big(-f(X)^{frac{n}{p}}big)^pequiv fbig(X^{frac{n}{p}}big)^p-big(f(X)^{frac{n}{p}}big)^pequiv 0pmod{X^r-1,p}$$
However, $R$ is not an integral domain so we cannot deduce that
$$fbig(X^{frac{n}{p}}big)-f(X)^{frac{n}{p}}equiv 0 pmod{X^r-1,p}$$
Please help, they say in the paper that it follows immediately and I do not understands why.
Edit: I have also noted that
$$f(X^p)^{frac{n}{p}}equiv (f(X)^p)^{frac{n}{p}}equiv f(X^n)equiv f(X)^npmod{X^r-1,p}$$
Note: The version of the paper that I work with
https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
number-theory proof-verification primality-test
number-theory proof-verification primality-test
edited Dec 1 at 16:30
asked Nov 29 at 21:20
Don Fanucci
1,093419
1,093419
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Finally, the solution is simple, I think.
We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).
Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019237%2faks-proving-that-fracnp-is-introspective%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Finally, the solution is simple, I think.
We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).
Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.
add a comment |
Finally, the solution is simple, I think.
We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).
Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.
add a comment |
Finally, the solution is simple, I think.
We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).
Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.
Finally, the solution is simple, I think.
We factor $X^r-1$ into irreducible elements (using UFD) and take out the $p$ exponent, trivially (the resulting quotient rings are ID).
Finally, we use the CRT for rings in order to lose the exponent in our original ring $R$.
answered Dec 4 at 18:41
Don Fanucci
1,093419
1,093419
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019237%2faks-proving-that-fracnp-is-introspective%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown