Showing that the distance from any point on an ellipse to the foci points is constant












1














Let $a$ be the largest x-value of an ellipse centered at the origin. Similarly, let $b$ be the largest y-value of the ellipse. Assume that $a>b$. We know that the foci points will be at $c_1=(-sqrt {a^2-b^2},0)$ and $c_2=(+sqrt {a^2-b^2},0)$ respectively. Then select some point on the ellipse $p_1$ with x-value $x_1$ between $-a$ and $a$. If we only consider the positive y-values of the ellipse, then we know from the equation of an ellipse that the y-value of $p_1$, will be $y_1=sqrt{b^2(1-frac{x_1^2}{a^2}})$ or better yet $y_1=frac{bsqrt{a^2-x_1^2}}{a}$. So for a generic x-value, the point on the ellipse will be $p_1=left(x_1, frac{bsqrt{a^2-x_1^2}}{a}right)$.



I'd like to show that the sum distance of $p_1$ to $c_1$ and $p_1$ to $c_2$ will be a constant that does not depend on the value of $x_1$. To do so, I planned to use Euclid's Metric, and have cancellation of the $x_1$ terms algebraically.



In other words, I would like to show a formula in terms of only $a$ and $b$ for the distance of a point on the ellipse to each foci. I am looking for how to manipulate Euclid's metric to show this cancellation.



For thoroughness, I'll give the original equation for the generic distance from $p_1$ to $c_1$: $sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$.










share|cite|improve this question
























  • Set $s(x_1)=sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}+ sqrt{(x_1+sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$ and square both sides. A few of algebra will lead to $s(x_1)=2a.$
    – user376343
    Nov 29 at 23:19










  • I am not seeing the steps. Could you show them?
    – Euler's Disgraced Stepchild
    Nov 30 at 0:19










  • Is the ellipse also axis-aligned? Centered at the origin doesn’t guarantee this.
    – amd
    Nov 30 at 0:48










  • @amd3 , this follows from the y-coordinate of the point $p_1$ o the ellipse.
    – user376343
    Nov 30 at 3:57
















1














Let $a$ be the largest x-value of an ellipse centered at the origin. Similarly, let $b$ be the largest y-value of the ellipse. Assume that $a>b$. We know that the foci points will be at $c_1=(-sqrt {a^2-b^2},0)$ and $c_2=(+sqrt {a^2-b^2},0)$ respectively. Then select some point on the ellipse $p_1$ with x-value $x_1$ between $-a$ and $a$. If we only consider the positive y-values of the ellipse, then we know from the equation of an ellipse that the y-value of $p_1$, will be $y_1=sqrt{b^2(1-frac{x_1^2}{a^2}})$ or better yet $y_1=frac{bsqrt{a^2-x_1^2}}{a}$. So for a generic x-value, the point on the ellipse will be $p_1=left(x_1, frac{bsqrt{a^2-x_1^2}}{a}right)$.



I'd like to show that the sum distance of $p_1$ to $c_1$ and $p_1$ to $c_2$ will be a constant that does not depend on the value of $x_1$. To do so, I planned to use Euclid's Metric, and have cancellation of the $x_1$ terms algebraically.



In other words, I would like to show a formula in terms of only $a$ and $b$ for the distance of a point on the ellipse to each foci. I am looking for how to manipulate Euclid's metric to show this cancellation.



For thoroughness, I'll give the original equation for the generic distance from $p_1$ to $c_1$: $sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$.










share|cite|improve this question
























  • Set $s(x_1)=sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}+ sqrt{(x_1+sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$ and square both sides. A few of algebra will lead to $s(x_1)=2a.$
    – user376343
    Nov 29 at 23:19










  • I am not seeing the steps. Could you show them?
    – Euler's Disgraced Stepchild
    Nov 30 at 0:19










  • Is the ellipse also axis-aligned? Centered at the origin doesn’t guarantee this.
    – amd
    Nov 30 at 0:48










  • @amd3 , this follows from the y-coordinate of the point $p_1$ o the ellipse.
    – user376343
    Nov 30 at 3:57














1












1








1


1





Let $a$ be the largest x-value of an ellipse centered at the origin. Similarly, let $b$ be the largest y-value of the ellipse. Assume that $a>b$. We know that the foci points will be at $c_1=(-sqrt {a^2-b^2},0)$ and $c_2=(+sqrt {a^2-b^2},0)$ respectively. Then select some point on the ellipse $p_1$ with x-value $x_1$ between $-a$ and $a$. If we only consider the positive y-values of the ellipse, then we know from the equation of an ellipse that the y-value of $p_1$, will be $y_1=sqrt{b^2(1-frac{x_1^2}{a^2}})$ or better yet $y_1=frac{bsqrt{a^2-x_1^2}}{a}$. So for a generic x-value, the point on the ellipse will be $p_1=left(x_1, frac{bsqrt{a^2-x_1^2}}{a}right)$.



I'd like to show that the sum distance of $p_1$ to $c_1$ and $p_1$ to $c_2$ will be a constant that does not depend on the value of $x_1$. To do so, I planned to use Euclid's Metric, and have cancellation of the $x_1$ terms algebraically.



In other words, I would like to show a formula in terms of only $a$ and $b$ for the distance of a point on the ellipse to each foci. I am looking for how to manipulate Euclid's metric to show this cancellation.



For thoroughness, I'll give the original equation for the generic distance from $p_1$ to $c_1$: $sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$.










share|cite|improve this question















Let $a$ be the largest x-value of an ellipse centered at the origin. Similarly, let $b$ be the largest y-value of the ellipse. Assume that $a>b$. We know that the foci points will be at $c_1=(-sqrt {a^2-b^2},0)$ and $c_2=(+sqrt {a^2-b^2},0)$ respectively. Then select some point on the ellipse $p_1$ with x-value $x_1$ between $-a$ and $a$. If we only consider the positive y-values of the ellipse, then we know from the equation of an ellipse that the y-value of $p_1$, will be $y_1=sqrt{b^2(1-frac{x_1^2}{a^2}})$ or better yet $y_1=frac{bsqrt{a^2-x_1^2}}{a}$. So for a generic x-value, the point on the ellipse will be $p_1=left(x_1, frac{bsqrt{a^2-x_1^2}}{a}right)$.



I'd like to show that the sum distance of $p_1$ to $c_1$ and $p_1$ to $c_2$ will be a constant that does not depend on the value of $x_1$. To do so, I planned to use Euclid's Metric, and have cancellation of the $x_1$ terms algebraically.



In other words, I would like to show a formula in terms of only $a$ and $b$ for the distance of a point on the ellipse to each foci. I am looking for how to manipulate Euclid's metric to show this cancellation.



For thoroughness, I'll give the original equation for the generic distance from $p_1$ to $c_1$: $sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$.







algebra-precalculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 29 at 22:12









KReiser

9,23411435




9,23411435










asked Nov 29 at 21:58









Euler's Disgraced Stepchild

316




316












  • Set $s(x_1)=sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}+ sqrt{(x_1+sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$ and square both sides. A few of algebra will lead to $s(x_1)=2a.$
    – user376343
    Nov 29 at 23:19










  • I am not seeing the steps. Could you show them?
    – Euler's Disgraced Stepchild
    Nov 30 at 0:19










  • Is the ellipse also axis-aligned? Centered at the origin doesn’t guarantee this.
    – amd
    Nov 30 at 0:48










  • @amd3 , this follows from the y-coordinate of the point $p_1$ o the ellipse.
    – user376343
    Nov 30 at 3:57


















  • Set $s(x_1)=sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}+ sqrt{(x_1+sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$ and square both sides. A few of algebra will lead to $s(x_1)=2a.$
    – user376343
    Nov 29 at 23:19










  • I am not seeing the steps. Could you show them?
    – Euler's Disgraced Stepchild
    Nov 30 at 0:19










  • Is the ellipse also axis-aligned? Centered at the origin doesn’t guarantee this.
    – amd
    Nov 30 at 0:48










  • @amd3 , this follows from the y-coordinate of the point $p_1$ o the ellipse.
    – user376343
    Nov 30 at 3:57
















Set $s(x_1)=sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}+ sqrt{(x_1+sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$ and square both sides. A few of algebra will lead to $s(x_1)=2a.$
– user376343
Nov 29 at 23:19




Set $s(x_1)=sqrt{(x_1-sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}+ sqrt{(x_1+sqrt{a^2-b^2})^2+left(frac{bsqrt{a^2-x_1^2}}{a}right)^2}$ and square both sides. A few of algebra will lead to $s(x_1)=2a.$
– user376343
Nov 29 at 23:19












I am not seeing the steps. Could you show them?
– Euler's Disgraced Stepchild
Nov 30 at 0:19




I am not seeing the steps. Could you show them?
– Euler's Disgraced Stepchild
Nov 30 at 0:19












Is the ellipse also axis-aligned? Centered at the origin doesn’t guarantee this.
– amd
Nov 30 at 0:48




Is the ellipse also axis-aligned? Centered at the origin doesn’t guarantee this.
– amd
Nov 30 at 0:48












@amd3 , this follows from the y-coordinate of the point $p_1$ o the ellipse.
– user376343
Nov 30 at 3:57




@amd3 , this follows from the y-coordinate of the point $p_1$ o the ellipse.
– user376343
Nov 30 at 3:57










2 Answers
2






active

oldest

votes


















1














An ellipse is defined as having the property you are trying to prove. The common equation $frac{x^2}{a^2}+frac{y^2}{b^2}=1$ is just an equation that satisfies this property. To show that this is the case, we can use the formula you mentioned: $c=sqrt{a^2-b^2}$ which is a little bit cleaner as $b^2=a^2-c^2$. We can multiply both sides of the equation of the ellipse by $a^2b^2$ to get $b^2x^2+a^2y^2=a^2b^2$ and then substituting for $b^2$ we get $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$ and after distributing: $a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2$. If we add $-2a^2cx$ from both sides we obtain $a^2x^2-c^2x^2+a^2y^2-2a^2cx=a^4-a^2c^2-2a^2cx$. Reordering terms a little bit yields $a^2x^2-2a^2cx+a^2c^2+a^2y^2=a^4-2a^2cx+c^2x^2$. We can factor $a^2$ out of the left side to get $a^2(x^2-2cx+c^2+y^2)=a^4-2a^2cx+c^2x^2$ and we can factor the perfect square in the parentheses and the perfect square on the right to get $a^2((x-c)^2+y^2)=(a^2-cx)^2$. Now we can take a square root on both sides to get $asqrt{(x-c)^2+y^2}=a^2-cx$.Multiplying by $-4$ gives $-4asqrt{(x-c)^2+y^2}=4cx-4a^2$. Adding $x^2+y^2+c^2-2cx+4a^2$ to both sides gives $4a^2-4asqrt{(x-c)^2+y^2}+x^2-2cx+c^2+y^2=x^2+2cx+c^2+y^2$. We can factor the perfect squares on the right and left to get $4a^2-4asqrt{(x-c)^2+y^2}+(x-c)^2+y^2=(x+c)^2+y^2$. If you look carefully at the left side you might notice it is a perfect square. Factoring it yields $(2a-sqrt{(x-c)^2+y^2})^2=(x+c)^2+y^2$. We can take square roots of both sides to get $2a-sqrt{(x-c)^2+y^2}=sqrt{(x+c)^2+y^2}$. Reordering terms gives $sqrt{(x-c)^2+y^2}+sqrt{(x+c)^2+y^2}=2a$. The first square root is the distance from any point $(x,y)$ to the focus on the right, and the second root is the distance from the same point to the focus on the left. We see that these distances sum to the constant $2a$.






share|cite|improve this answer





















  • Excellent, exactly what I was looking for
    – Euler's Disgraced Stepchild
    Dec 1 at 18:14



















1














Every point of elipse $(bx)^2 +(ay)^2 =(ab)^2 $ can be represent as $P=(acos t , bsin t)$ hence $$c_1 P +c_2 P =sqrt{(sqrt{a^2 -b^2} +acos t )^2 + b^2sin^2 t } +sqrt{(sqrt{a^2 -b^2} -acos t )^2 + b^2sin^2 t }=sqrt{(a+sqrt{a^2 -b^2}cos t)^2 } +sqrt{(a-sqrt{a^2 -b^2}cos t)^2 } =2a$$






share|cite|improve this answer





















  • I definitely agree that using the parametric recipe for an ellipse makes this demonstration a lot easier!
    – AmbretteOrrisey
    Nov 30 at 18:13










  • Could you show how you got from the first radical to the 2nd? How does the b^2sin^2 cancel out?
    – Euler's Disgraced Stepchild
    Dec 12 at 14:20











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019289%2fshowing-that-the-distance-from-any-point-on-an-ellipse-to-the-foci-points-is-con%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1














An ellipse is defined as having the property you are trying to prove. The common equation $frac{x^2}{a^2}+frac{y^2}{b^2}=1$ is just an equation that satisfies this property. To show that this is the case, we can use the formula you mentioned: $c=sqrt{a^2-b^2}$ which is a little bit cleaner as $b^2=a^2-c^2$. We can multiply both sides of the equation of the ellipse by $a^2b^2$ to get $b^2x^2+a^2y^2=a^2b^2$ and then substituting for $b^2$ we get $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$ and after distributing: $a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2$. If we add $-2a^2cx$ from both sides we obtain $a^2x^2-c^2x^2+a^2y^2-2a^2cx=a^4-a^2c^2-2a^2cx$. Reordering terms a little bit yields $a^2x^2-2a^2cx+a^2c^2+a^2y^2=a^4-2a^2cx+c^2x^2$. We can factor $a^2$ out of the left side to get $a^2(x^2-2cx+c^2+y^2)=a^4-2a^2cx+c^2x^2$ and we can factor the perfect square in the parentheses and the perfect square on the right to get $a^2((x-c)^2+y^2)=(a^2-cx)^2$. Now we can take a square root on both sides to get $asqrt{(x-c)^2+y^2}=a^2-cx$.Multiplying by $-4$ gives $-4asqrt{(x-c)^2+y^2}=4cx-4a^2$. Adding $x^2+y^2+c^2-2cx+4a^2$ to both sides gives $4a^2-4asqrt{(x-c)^2+y^2}+x^2-2cx+c^2+y^2=x^2+2cx+c^2+y^2$. We can factor the perfect squares on the right and left to get $4a^2-4asqrt{(x-c)^2+y^2}+(x-c)^2+y^2=(x+c)^2+y^2$. If you look carefully at the left side you might notice it is a perfect square. Factoring it yields $(2a-sqrt{(x-c)^2+y^2})^2=(x+c)^2+y^2$. We can take square roots of both sides to get $2a-sqrt{(x-c)^2+y^2}=sqrt{(x+c)^2+y^2}$. Reordering terms gives $sqrt{(x-c)^2+y^2}+sqrt{(x+c)^2+y^2}=2a$. The first square root is the distance from any point $(x,y)$ to the focus on the right, and the second root is the distance from the same point to the focus on the left. We see that these distances sum to the constant $2a$.






share|cite|improve this answer





















  • Excellent, exactly what I was looking for
    – Euler's Disgraced Stepchild
    Dec 1 at 18:14
















1














An ellipse is defined as having the property you are trying to prove. The common equation $frac{x^2}{a^2}+frac{y^2}{b^2}=1$ is just an equation that satisfies this property. To show that this is the case, we can use the formula you mentioned: $c=sqrt{a^2-b^2}$ which is a little bit cleaner as $b^2=a^2-c^2$. We can multiply both sides of the equation of the ellipse by $a^2b^2$ to get $b^2x^2+a^2y^2=a^2b^2$ and then substituting for $b^2$ we get $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$ and after distributing: $a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2$. If we add $-2a^2cx$ from both sides we obtain $a^2x^2-c^2x^2+a^2y^2-2a^2cx=a^4-a^2c^2-2a^2cx$. Reordering terms a little bit yields $a^2x^2-2a^2cx+a^2c^2+a^2y^2=a^4-2a^2cx+c^2x^2$. We can factor $a^2$ out of the left side to get $a^2(x^2-2cx+c^2+y^2)=a^4-2a^2cx+c^2x^2$ and we can factor the perfect square in the parentheses and the perfect square on the right to get $a^2((x-c)^2+y^2)=(a^2-cx)^2$. Now we can take a square root on both sides to get $asqrt{(x-c)^2+y^2}=a^2-cx$.Multiplying by $-4$ gives $-4asqrt{(x-c)^2+y^2}=4cx-4a^2$. Adding $x^2+y^2+c^2-2cx+4a^2$ to both sides gives $4a^2-4asqrt{(x-c)^2+y^2}+x^2-2cx+c^2+y^2=x^2+2cx+c^2+y^2$. We can factor the perfect squares on the right and left to get $4a^2-4asqrt{(x-c)^2+y^2}+(x-c)^2+y^2=(x+c)^2+y^2$. If you look carefully at the left side you might notice it is a perfect square. Factoring it yields $(2a-sqrt{(x-c)^2+y^2})^2=(x+c)^2+y^2$. We can take square roots of both sides to get $2a-sqrt{(x-c)^2+y^2}=sqrt{(x+c)^2+y^2}$. Reordering terms gives $sqrt{(x-c)^2+y^2}+sqrt{(x+c)^2+y^2}=2a$. The first square root is the distance from any point $(x,y)$ to the focus on the right, and the second root is the distance from the same point to the focus on the left. We see that these distances sum to the constant $2a$.






share|cite|improve this answer





















  • Excellent, exactly what I was looking for
    – Euler's Disgraced Stepchild
    Dec 1 at 18:14














1












1








1






An ellipse is defined as having the property you are trying to prove. The common equation $frac{x^2}{a^2}+frac{y^2}{b^2}=1$ is just an equation that satisfies this property. To show that this is the case, we can use the formula you mentioned: $c=sqrt{a^2-b^2}$ which is a little bit cleaner as $b^2=a^2-c^2$. We can multiply both sides of the equation of the ellipse by $a^2b^2$ to get $b^2x^2+a^2y^2=a^2b^2$ and then substituting for $b^2$ we get $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$ and after distributing: $a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2$. If we add $-2a^2cx$ from both sides we obtain $a^2x^2-c^2x^2+a^2y^2-2a^2cx=a^4-a^2c^2-2a^2cx$. Reordering terms a little bit yields $a^2x^2-2a^2cx+a^2c^2+a^2y^2=a^4-2a^2cx+c^2x^2$. We can factor $a^2$ out of the left side to get $a^2(x^2-2cx+c^2+y^2)=a^4-2a^2cx+c^2x^2$ and we can factor the perfect square in the parentheses and the perfect square on the right to get $a^2((x-c)^2+y^2)=(a^2-cx)^2$. Now we can take a square root on both sides to get $asqrt{(x-c)^2+y^2}=a^2-cx$.Multiplying by $-4$ gives $-4asqrt{(x-c)^2+y^2}=4cx-4a^2$. Adding $x^2+y^2+c^2-2cx+4a^2$ to both sides gives $4a^2-4asqrt{(x-c)^2+y^2}+x^2-2cx+c^2+y^2=x^2+2cx+c^2+y^2$. We can factor the perfect squares on the right and left to get $4a^2-4asqrt{(x-c)^2+y^2}+(x-c)^2+y^2=(x+c)^2+y^2$. If you look carefully at the left side you might notice it is a perfect square. Factoring it yields $(2a-sqrt{(x-c)^2+y^2})^2=(x+c)^2+y^2$. We can take square roots of both sides to get $2a-sqrt{(x-c)^2+y^2}=sqrt{(x+c)^2+y^2}$. Reordering terms gives $sqrt{(x-c)^2+y^2}+sqrt{(x+c)^2+y^2}=2a$. The first square root is the distance from any point $(x,y)$ to the focus on the right, and the second root is the distance from the same point to the focus on the left. We see that these distances sum to the constant $2a$.






share|cite|improve this answer












An ellipse is defined as having the property you are trying to prove. The common equation $frac{x^2}{a^2}+frac{y^2}{b^2}=1$ is just an equation that satisfies this property. To show that this is the case, we can use the formula you mentioned: $c=sqrt{a^2-b^2}$ which is a little bit cleaner as $b^2=a^2-c^2$. We can multiply both sides of the equation of the ellipse by $a^2b^2$ to get $b^2x^2+a^2y^2=a^2b^2$ and then substituting for $b^2$ we get $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$ and after distributing: $a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2$. If we add $-2a^2cx$ from both sides we obtain $a^2x^2-c^2x^2+a^2y^2-2a^2cx=a^4-a^2c^2-2a^2cx$. Reordering terms a little bit yields $a^2x^2-2a^2cx+a^2c^2+a^2y^2=a^4-2a^2cx+c^2x^2$. We can factor $a^2$ out of the left side to get $a^2(x^2-2cx+c^2+y^2)=a^4-2a^2cx+c^2x^2$ and we can factor the perfect square in the parentheses and the perfect square on the right to get $a^2((x-c)^2+y^2)=(a^2-cx)^2$. Now we can take a square root on both sides to get $asqrt{(x-c)^2+y^2}=a^2-cx$.Multiplying by $-4$ gives $-4asqrt{(x-c)^2+y^2}=4cx-4a^2$. Adding $x^2+y^2+c^2-2cx+4a^2$ to both sides gives $4a^2-4asqrt{(x-c)^2+y^2}+x^2-2cx+c^2+y^2=x^2+2cx+c^2+y^2$. We can factor the perfect squares on the right and left to get $4a^2-4asqrt{(x-c)^2+y^2}+(x-c)^2+y^2=(x+c)^2+y^2$. If you look carefully at the left side you might notice it is a perfect square. Factoring it yields $(2a-sqrt{(x-c)^2+y^2})^2=(x+c)^2+y^2$. We can take square roots of both sides to get $2a-sqrt{(x-c)^2+y^2}=sqrt{(x+c)^2+y^2}$. Reordering terms gives $sqrt{(x-c)^2+y^2}+sqrt{(x+c)^2+y^2}=2a$. The first square root is the distance from any point $(x,y)$ to the focus on the right, and the second root is the distance from the same point to the focus on the left. We see that these distances sum to the constant $2a$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 30 at 17:16









coDE_RP

486




486












  • Excellent, exactly what I was looking for
    – Euler's Disgraced Stepchild
    Dec 1 at 18:14


















  • Excellent, exactly what I was looking for
    – Euler's Disgraced Stepchild
    Dec 1 at 18:14
















Excellent, exactly what I was looking for
– Euler's Disgraced Stepchild
Dec 1 at 18:14




Excellent, exactly what I was looking for
– Euler's Disgraced Stepchild
Dec 1 at 18:14











1














Every point of elipse $(bx)^2 +(ay)^2 =(ab)^2 $ can be represent as $P=(acos t , bsin t)$ hence $$c_1 P +c_2 P =sqrt{(sqrt{a^2 -b^2} +acos t )^2 + b^2sin^2 t } +sqrt{(sqrt{a^2 -b^2} -acos t )^2 + b^2sin^2 t }=sqrt{(a+sqrt{a^2 -b^2}cos t)^2 } +sqrt{(a-sqrt{a^2 -b^2}cos t)^2 } =2a$$






share|cite|improve this answer





















  • I definitely agree that using the parametric recipe for an ellipse makes this demonstration a lot easier!
    – AmbretteOrrisey
    Nov 30 at 18:13










  • Could you show how you got from the first radical to the 2nd? How does the b^2sin^2 cancel out?
    – Euler's Disgraced Stepchild
    Dec 12 at 14:20
















1














Every point of elipse $(bx)^2 +(ay)^2 =(ab)^2 $ can be represent as $P=(acos t , bsin t)$ hence $$c_1 P +c_2 P =sqrt{(sqrt{a^2 -b^2} +acos t )^2 + b^2sin^2 t } +sqrt{(sqrt{a^2 -b^2} -acos t )^2 + b^2sin^2 t }=sqrt{(a+sqrt{a^2 -b^2}cos t)^2 } +sqrt{(a-sqrt{a^2 -b^2}cos t)^2 } =2a$$






share|cite|improve this answer





















  • I definitely agree that using the parametric recipe for an ellipse makes this demonstration a lot easier!
    – AmbretteOrrisey
    Nov 30 at 18:13










  • Could you show how you got from the first radical to the 2nd? How does the b^2sin^2 cancel out?
    – Euler's Disgraced Stepchild
    Dec 12 at 14:20














1












1








1






Every point of elipse $(bx)^2 +(ay)^2 =(ab)^2 $ can be represent as $P=(acos t , bsin t)$ hence $$c_1 P +c_2 P =sqrt{(sqrt{a^2 -b^2} +acos t )^2 + b^2sin^2 t } +sqrt{(sqrt{a^2 -b^2} -acos t )^2 + b^2sin^2 t }=sqrt{(a+sqrt{a^2 -b^2}cos t)^2 } +sqrt{(a-sqrt{a^2 -b^2}cos t)^2 } =2a$$






share|cite|improve this answer












Every point of elipse $(bx)^2 +(ay)^2 =(ab)^2 $ can be represent as $P=(acos t , bsin t)$ hence $$c_1 P +c_2 P =sqrt{(sqrt{a^2 -b^2} +acos t )^2 + b^2sin^2 t } +sqrt{(sqrt{a^2 -b^2} -acos t )^2 + b^2sin^2 t }=sqrt{(a+sqrt{a^2 -b^2}cos t)^2 } +sqrt{(a-sqrt{a^2 -b^2}cos t)^2 } =2a$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 29 at 23:31









MotylaNogaTomkaMazura

6,577917




6,577917












  • I definitely agree that using the parametric recipe for an ellipse makes this demonstration a lot easier!
    – AmbretteOrrisey
    Nov 30 at 18:13










  • Could you show how you got from the first radical to the 2nd? How does the b^2sin^2 cancel out?
    – Euler's Disgraced Stepchild
    Dec 12 at 14:20


















  • I definitely agree that using the parametric recipe for an ellipse makes this demonstration a lot easier!
    – AmbretteOrrisey
    Nov 30 at 18:13










  • Could you show how you got from the first radical to the 2nd? How does the b^2sin^2 cancel out?
    – Euler's Disgraced Stepchild
    Dec 12 at 14:20
















I definitely agree that using the parametric recipe for an ellipse makes this demonstration a lot easier!
– AmbretteOrrisey
Nov 30 at 18:13




I definitely agree that using the parametric recipe for an ellipse makes this demonstration a lot easier!
– AmbretteOrrisey
Nov 30 at 18:13












Could you show how you got from the first radical to the 2nd? How does the b^2sin^2 cancel out?
– Euler's Disgraced Stepchild
Dec 12 at 14:20




Could you show how you got from the first radical to the 2nd? How does the b^2sin^2 cancel out?
– Euler's Disgraced Stepchild
Dec 12 at 14:20


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019289%2fshowing-that-the-distance-from-any-point-on-an-ellipse-to-the-foci-points-is-con%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen