Calculate limit of Gamma function











up vote
2
down vote

favorite












Show that



$$lim _{x to infty} log left( frac{ sqrt{x} Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right) = frac{1}{2} log(2),$$ where $Gamma$ is the Gamma function.



I reduced this problem to calculate the limit:
$$lim_{x to infty} frac{Bleft(frac{x}{2},frac{x}{2}right)}{Bleft(frac{x+1}{2},frac{x+1}{2}right)} = 2, $$ where $B$ is the Beta function, but I don't know if this is useful or if there is other way to calculate this limit.



Any help will be very appreciated, thanks!










share|cite|improve this question




























    up vote
    2
    down vote

    favorite












    Show that



    $$lim _{x to infty} log left( frac{ sqrt{x} Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right) = frac{1}{2} log(2),$$ where $Gamma$ is the Gamma function.



    I reduced this problem to calculate the limit:
    $$lim_{x to infty} frac{Bleft(frac{x}{2},frac{x}{2}right)}{Bleft(frac{x+1}{2},frac{x+1}{2}right)} = 2, $$ where $B$ is the Beta function, but I don't know if this is useful or if there is other way to calculate this limit.



    Any help will be very appreciated, thanks!










    share|cite|improve this question


























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      Show that



      $$lim _{x to infty} log left( frac{ sqrt{x} Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right) = frac{1}{2} log(2),$$ where $Gamma$ is the Gamma function.



      I reduced this problem to calculate the limit:
      $$lim_{x to infty} frac{Bleft(frac{x}{2},frac{x}{2}right)}{Bleft(frac{x+1}{2},frac{x+1}{2}right)} = 2, $$ where $B$ is the Beta function, but I don't know if this is useful or if there is other way to calculate this limit.



      Any help will be very appreciated, thanks!










      share|cite|improve this question















      Show that



      $$lim _{x to infty} log left( frac{ sqrt{x} Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right) = frac{1}{2} log(2),$$ where $Gamma$ is the Gamma function.



      I reduced this problem to calculate the limit:
      $$lim_{x to infty} frac{Bleft(frac{x}{2},frac{x}{2}right)}{Bleft(frac{x+1}{2},frac{x+1}{2}right)} = 2, $$ where $B$ is the Beta function, but I don't know if this is useful or if there is other way to calculate this limit.



      Any help will be very appreciated, thanks!







      limits statistical-inference gamma-function probability-limit-theorems beta-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 27 at 0:54









      Larry

      1,3202722




      1,3202722










      asked Nov 27 at 0:37









      user392559

      37118




      37118






















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$

          begin{align}
          &bbox[10px,#ffd]{lim _{x to infty}
          lnpars{root{x}Gammapars{x/2} over
          Gammapars{bracks{x + 1}/2}}} =
          {1 over 2},lnpars{2} + lim _{x to infty}
          lnpars{root{x}Gammapars{x} over Gammapars{x + 1/2}}
          \[5mm] = &
          {1 over 2},lnpars{2} + lim _{x to infty}
          lnpars{root{x}bracks{x - 1}! over bracks{x - 1/2}!}
          \[5mm] = &
          {1 over 2},lnpars{2} + lim _{x to infty}
          lnpars{root{x},{root{2pi}bracks{x - 1}^{x - 1/2}
          expo{-pars{x - 1}} over
          root{2pi}bracks{x - 1/2}^{x}expo{-pars{x - 1/2}}}}
          \[5mm] = &
          {1 over 2},lnpars{2} + lim _{x to infty}
          lnpars{root{x},{x^{x - 1/2}bracks{1 - 1/x}^{x - 1/2}
          root{expo{}} over
          x^{x}bracks{1 - pars{1/2}/x}^{x}}}
          \[5mm] = &
          {1 over 2},lnpars{2} +
          underbrace{lnpars{{expo{-1}root{expo{}} overexpo{-1/2}}}}
          _{ds{= 0}} = bbx{{1 over 2},lnpars{2}}approx 0.3466
          end{align}






          share|cite|improve this answer




























            up vote
            1
            down vote













            Hint

            Use $$logGamma(x)=xlog x-x+frac12logfrac{2pi}x+o(1)$$ as $xtoinfty$.






            share|cite|improve this answer

















            • 1




              I can see how to use this to calculate the limit I want, but why is this true?
              – user392559
              Nov 27 at 1:08






            • 1




              It is called Stirling's formula, proof can be found here.
              – Kemono Chen
              Nov 27 at 1:11


















            up vote
            1
            down vote













            $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac 12 log(x)+log left(Gamma left(frac{x}{2}right)right)-log left(Gamma left(frac{x+1}{2}right)right)$$



            Now, using Stirling approximation, as Kemono Chen commented,
            $$logleft(Gamma left(tright)right)=t (log (t)-1)+frac{1}{2} left(-log left({t}right)+log (2 pi
            )right)+frac{1}{12 t}+Oleft(frac{1}{t^3}right)$$
            Use this formula, simplify and continue with Taylor expansion to get
            $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac{log (2)}{2}+frac{1}{4 x}+Oleft(frac{1}{x^3}right)$$ which shows the limit and how it is approached.






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015157%2fcalculate-limit-of-gamma-function%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote



              accepted










              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$

              begin{align}
              &bbox[10px,#ffd]{lim _{x to infty}
              lnpars{root{x}Gammapars{x/2} over
              Gammapars{bracks{x + 1}/2}}} =
              {1 over 2},lnpars{2} + lim _{x to infty}
              lnpars{root{x}Gammapars{x} over Gammapars{x + 1/2}}
              \[5mm] = &
              {1 over 2},lnpars{2} + lim _{x to infty}
              lnpars{root{x}bracks{x - 1}! over bracks{x - 1/2}!}
              \[5mm] = &
              {1 over 2},lnpars{2} + lim _{x to infty}
              lnpars{root{x},{root{2pi}bracks{x - 1}^{x - 1/2}
              expo{-pars{x - 1}} over
              root{2pi}bracks{x - 1/2}^{x}expo{-pars{x - 1/2}}}}
              \[5mm] = &
              {1 over 2},lnpars{2} + lim _{x to infty}
              lnpars{root{x},{x^{x - 1/2}bracks{1 - 1/x}^{x - 1/2}
              root{expo{}} over
              x^{x}bracks{1 - pars{1/2}/x}^{x}}}
              \[5mm] = &
              {1 over 2},lnpars{2} +
              underbrace{lnpars{{expo{-1}root{expo{}} overexpo{-1/2}}}}
              _{ds{= 0}} = bbx{{1 over 2},lnpars{2}}approx 0.3466
              end{align}






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted










                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$

                begin{align}
                &bbox[10px,#ffd]{lim _{x to infty}
                lnpars{root{x}Gammapars{x/2} over
                Gammapars{bracks{x + 1}/2}}} =
                {1 over 2},lnpars{2} + lim _{x to infty}
                lnpars{root{x}Gammapars{x} over Gammapars{x + 1/2}}
                \[5mm] = &
                {1 over 2},lnpars{2} + lim _{x to infty}
                lnpars{root{x}bracks{x - 1}! over bracks{x - 1/2}!}
                \[5mm] = &
                {1 over 2},lnpars{2} + lim _{x to infty}
                lnpars{root{x},{root{2pi}bracks{x - 1}^{x - 1/2}
                expo{-pars{x - 1}} over
                root{2pi}bracks{x - 1/2}^{x}expo{-pars{x - 1/2}}}}
                \[5mm] = &
                {1 over 2},lnpars{2} + lim _{x to infty}
                lnpars{root{x},{x^{x - 1/2}bracks{1 - 1/x}^{x - 1/2}
                root{expo{}} over
                x^{x}bracks{1 - pars{1/2}/x}^{x}}}
                \[5mm] = &
                {1 over 2},lnpars{2} +
                underbrace{lnpars{{expo{-1}root{expo{}} overexpo{-1/2}}}}
                _{ds{= 0}} = bbx{{1 over 2},lnpars{2}}approx 0.3466
                end{align}






                share|cite|improve this answer























                  up vote
                  1
                  down vote



                  accepted







                  up vote
                  1
                  down vote



                  accepted






                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                  newcommand{dd}{mathrm{d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                  newcommand{ic}{mathrm{i}}
                  newcommand{mc}[1]{mathcal{#1}}
                  newcommand{mrm}[1]{mathrm{#1}}
                  newcommand{pars}[1]{left(,{#1},right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                  newcommand{verts}[1]{leftvert,{#1},rightvert}$

                  begin{align}
                  &bbox[10px,#ffd]{lim _{x to infty}
                  lnpars{root{x}Gammapars{x/2} over
                  Gammapars{bracks{x + 1}/2}}} =
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x}Gammapars{x} over Gammapars{x + 1/2}}
                  \[5mm] = &
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x}bracks{x - 1}! over bracks{x - 1/2}!}
                  \[5mm] = &
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x},{root{2pi}bracks{x - 1}^{x - 1/2}
                  expo{-pars{x - 1}} over
                  root{2pi}bracks{x - 1/2}^{x}expo{-pars{x - 1/2}}}}
                  \[5mm] = &
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x},{x^{x - 1/2}bracks{1 - 1/x}^{x - 1/2}
                  root{expo{}} over
                  x^{x}bracks{1 - pars{1/2}/x}^{x}}}
                  \[5mm] = &
                  {1 over 2},lnpars{2} +
                  underbrace{lnpars{{expo{-1}root{expo{}} overexpo{-1/2}}}}
                  _{ds{= 0}} = bbx{{1 over 2},lnpars{2}}approx 0.3466
                  end{align}






                  share|cite|improve this answer












                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                  newcommand{dd}{mathrm{d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                  newcommand{ic}{mathrm{i}}
                  newcommand{mc}[1]{mathcal{#1}}
                  newcommand{mrm}[1]{mathrm{#1}}
                  newcommand{pars}[1]{left(,{#1},right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                  newcommand{verts}[1]{leftvert,{#1},rightvert}$

                  begin{align}
                  &bbox[10px,#ffd]{lim _{x to infty}
                  lnpars{root{x}Gammapars{x/2} over
                  Gammapars{bracks{x + 1}/2}}} =
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x}Gammapars{x} over Gammapars{x + 1/2}}
                  \[5mm] = &
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x}bracks{x - 1}! over bracks{x - 1/2}!}
                  \[5mm] = &
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x},{root{2pi}bracks{x - 1}^{x - 1/2}
                  expo{-pars{x - 1}} over
                  root{2pi}bracks{x - 1/2}^{x}expo{-pars{x - 1/2}}}}
                  \[5mm] = &
                  {1 over 2},lnpars{2} + lim _{x to infty}
                  lnpars{root{x},{x^{x - 1/2}bracks{1 - 1/x}^{x - 1/2}
                  root{expo{}} over
                  x^{x}bracks{1 - pars{1/2}/x}^{x}}}
                  \[5mm] = &
                  {1 over 2},lnpars{2} +
                  underbrace{lnpars{{expo{-1}root{expo{}} overexpo{-1/2}}}}
                  _{ds{= 0}} = bbx{{1 over 2},lnpars{2}}approx 0.3466
                  end{align}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 27 at 22:08









                  Felix Marin

                  66.8k7107139




                  66.8k7107139






















                      up vote
                      1
                      down vote













                      Hint

                      Use $$logGamma(x)=xlog x-x+frac12logfrac{2pi}x+o(1)$$ as $xtoinfty$.






                      share|cite|improve this answer

















                      • 1




                        I can see how to use this to calculate the limit I want, but why is this true?
                        – user392559
                        Nov 27 at 1:08






                      • 1




                        It is called Stirling's formula, proof can be found here.
                        – Kemono Chen
                        Nov 27 at 1:11















                      up vote
                      1
                      down vote













                      Hint

                      Use $$logGamma(x)=xlog x-x+frac12logfrac{2pi}x+o(1)$$ as $xtoinfty$.






                      share|cite|improve this answer

















                      • 1




                        I can see how to use this to calculate the limit I want, but why is this true?
                        – user392559
                        Nov 27 at 1:08






                      • 1




                        It is called Stirling's formula, proof can be found here.
                        – Kemono Chen
                        Nov 27 at 1:11













                      up vote
                      1
                      down vote










                      up vote
                      1
                      down vote









                      Hint

                      Use $$logGamma(x)=xlog x-x+frac12logfrac{2pi}x+o(1)$$ as $xtoinfty$.






                      share|cite|improve this answer












                      Hint

                      Use $$logGamma(x)=xlog x-x+frac12logfrac{2pi}x+o(1)$$ as $xtoinfty$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 27 at 0:53









                      Kemono Chen

                      2,125435




                      2,125435








                      • 1




                        I can see how to use this to calculate the limit I want, but why is this true?
                        – user392559
                        Nov 27 at 1:08






                      • 1




                        It is called Stirling's formula, proof can be found here.
                        – Kemono Chen
                        Nov 27 at 1:11














                      • 1




                        I can see how to use this to calculate the limit I want, but why is this true?
                        – user392559
                        Nov 27 at 1:08






                      • 1




                        It is called Stirling's formula, proof can be found here.
                        – Kemono Chen
                        Nov 27 at 1:11








                      1




                      1




                      I can see how to use this to calculate the limit I want, but why is this true?
                      – user392559
                      Nov 27 at 1:08




                      I can see how to use this to calculate the limit I want, but why is this true?
                      – user392559
                      Nov 27 at 1:08




                      1




                      1




                      It is called Stirling's formula, proof can be found here.
                      – Kemono Chen
                      Nov 27 at 1:11




                      It is called Stirling's formula, proof can be found here.
                      – Kemono Chen
                      Nov 27 at 1:11










                      up vote
                      1
                      down vote













                      $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac 12 log(x)+log left(Gamma left(frac{x}{2}right)right)-log left(Gamma left(frac{x+1}{2}right)right)$$



                      Now, using Stirling approximation, as Kemono Chen commented,
                      $$logleft(Gamma left(tright)right)=t (log (t)-1)+frac{1}{2} left(-log left({t}right)+log (2 pi
                      )right)+frac{1}{12 t}+Oleft(frac{1}{t^3}right)$$
                      Use this formula, simplify and continue with Taylor expansion to get
                      $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac{log (2)}{2}+frac{1}{4 x}+Oleft(frac{1}{x^3}right)$$ which shows the limit and how it is approached.






                      share|cite|improve this answer

























                        up vote
                        1
                        down vote













                        $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac 12 log(x)+log left(Gamma left(frac{x}{2}right)right)-log left(Gamma left(frac{x+1}{2}right)right)$$



                        Now, using Stirling approximation, as Kemono Chen commented,
                        $$logleft(Gamma left(tright)right)=t (log (t)-1)+frac{1}{2} left(-log left({t}right)+log (2 pi
                        )right)+frac{1}{12 t}+Oleft(frac{1}{t^3}right)$$
                        Use this formula, simplify and continue with Taylor expansion to get
                        $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac{log (2)}{2}+frac{1}{4 x}+Oleft(frac{1}{x^3}right)$$ which shows the limit and how it is approached.






                        share|cite|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac 12 log(x)+log left(Gamma left(frac{x}{2}right)right)-log left(Gamma left(frac{x+1}{2}right)right)$$



                          Now, using Stirling approximation, as Kemono Chen commented,
                          $$logleft(Gamma left(tright)right)=t (log (t)-1)+frac{1}{2} left(-log left({t}right)+log (2 pi
                          )right)+frac{1}{12 t}+Oleft(frac{1}{t^3}right)$$
                          Use this formula, simplify and continue with Taylor expansion to get
                          $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac{log (2)}{2}+frac{1}{4 x}+Oleft(frac{1}{x^3}right)$$ which shows the limit and how it is approached.






                          share|cite|improve this answer












                          $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac 12 log(x)+log left(Gamma left(frac{x}{2}right)right)-log left(Gamma left(frac{x+1}{2}right)right)$$



                          Now, using Stirling approximation, as Kemono Chen commented,
                          $$logleft(Gamma left(tright)right)=t (log (t)-1)+frac{1}{2} left(-log left({t}right)+log (2 pi
                          )right)+frac{1}{12 t}+Oleft(frac{1}{t^3}right)$$
                          Use this formula, simplify and continue with Taylor expansion to get
                          $$log left( frac{ sqrt{x}, Gammaleft(frac{x}{2}right) } {Gamma left( frac{x+1}{2}right)} right)=frac{log (2)}{2}+frac{1}{4 x}+Oleft(frac{1}{x^3}right)$$ which shows the limit and how it is approached.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 27 at 4:29









                          Claude Leibovici

                          118k1156131




                          118k1156131






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015157%2fcalculate-limit-of-gamma-function%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              To store a contact into the json file from server.js file using a class in NodeJS

                              Redirect URL with Chrome Remote Debugging Android Devices

                              Dieringhausen