How to prove $sum_{dmid q}frac{mu(d)log d}{d}=-frac{phi(q)}{q}sum_{pmid q}frac{log p}{p-1}$?












1














Prove that $$sum_{dmid q}frac{mu(d)log d}{d}=-frac{phi(q)}{q}sum_{pmid q}frac{log p}{p-1},$$
where $mu$ is Möbius function, $phi$ is Euler's totient function, and $q$ is a positive integer.



I can get
begin{align}
sum_{dmid q} frac{mu(d)log d}{d}& = sum_{dmid q}frac{mu(d)}{d}sum_{pmid d}log p \
& = sum_{pmid q} log p sum_{substack{dmid q \ pmid d}} frac{mu(d)}{d}
= sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d},
end{align}

Let $d=pr$, then $mu(d)=mu(p)mu(r)=-mu(r)$,
$$ sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d}= - sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}.$$
But I don't know why
$$- sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}=-frac{phi(q)}{q} sum_{pmid q} frac{log p}{p-1}?$$



Can you help me?










share|cite|improve this question
























  • Can't you just prove the original statement when $q$ is a prime power and appeal to multiplicativity?
    – mathworker21
    Nov 12 at 5:40






  • 1




    @mathworker21 To obtain something multiplicative it would help to replace $log(d)$ by $d^{-s}$ and differentiate (at $s=0$) at the end. The RHS is the derivative of $prod_{p | q} (1-p^{-(s+1)})$
    – reuns
    Nov 12 at 6:15












  • Just to make sure, does the sum over $p$ only involve prime values of $p$?
    – Batominovski
    Nov 12 at 10:28
















1














Prove that $$sum_{dmid q}frac{mu(d)log d}{d}=-frac{phi(q)}{q}sum_{pmid q}frac{log p}{p-1},$$
where $mu$ is Möbius function, $phi$ is Euler's totient function, and $q$ is a positive integer.



I can get
begin{align}
sum_{dmid q} frac{mu(d)log d}{d}& = sum_{dmid q}frac{mu(d)}{d}sum_{pmid d}log p \
& = sum_{pmid q} log p sum_{substack{dmid q \ pmid d}} frac{mu(d)}{d}
= sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d},
end{align}

Let $d=pr$, then $mu(d)=mu(p)mu(r)=-mu(r)$,
$$ sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d}= - sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}.$$
But I don't know why
$$- sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}=-frac{phi(q)}{q} sum_{pmid q} frac{log p}{p-1}?$$



Can you help me?










share|cite|improve this question
























  • Can't you just prove the original statement when $q$ is a prime power and appeal to multiplicativity?
    – mathworker21
    Nov 12 at 5:40






  • 1




    @mathworker21 To obtain something multiplicative it would help to replace $log(d)$ by $d^{-s}$ and differentiate (at $s=0$) at the end. The RHS is the derivative of $prod_{p | q} (1-p^{-(s+1)})$
    – reuns
    Nov 12 at 6:15












  • Just to make sure, does the sum over $p$ only involve prime values of $p$?
    – Batominovski
    Nov 12 at 10:28














1












1








1







Prove that $$sum_{dmid q}frac{mu(d)log d}{d}=-frac{phi(q)}{q}sum_{pmid q}frac{log p}{p-1},$$
where $mu$ is Möbius function, $phi$ is Euler's totient function, and $q$ is a positive integer.



I can get
begin{align}
sum_{dmid q} frac{mu(d)log d}{d}& = sum_{dmid q}frac{mu(d)}{d}sum_{pmid d}log p \
& = sum_{pmid q} log p sum_{substack{dmid q \ pmid d}} frac{mu(d)}{d}
= sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d},
end{align}

Let $d=pr$, then $mu(d)=mu(p)mu(r)=-mu(r)$,
$$ sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d}= - sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}.$$
But I don't know why
$$- sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}=-frac{phi(q)}{q} sum_{pmid q} frac{log p}{p-1}?$$



Can you help me?










share|cite|improve this question















Prove that $$sum_{dmid q}frac{mu(d)log d}{d}=-frac{phi(q)}{q}sum_{pmid q}frac{log p}{p-1},$$
where $mu$ is Möbius function, $phi$ is Euler's totient function, and $q$ is a positive integer.



I can get
begin{align}
sum_{dmid q} frac{mu(d)log d}{d}& = sum_{dmid q}frac{mu(d)}{d}sum_{pmid d}log p \
& = sum_{pmid q} log p sum_{substack{dmid q \ pmid d}} frac{mu(d)}{d}
= sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d},
end{align}

Let $d=pr$, then $mu(d)=mu(p)mu(r)=-mu(r)$,
$$ sum_{pmid q} log p sum_{substack{d \ pmid d mid q}} frac{mu(d)}{d}= - sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}.$$
But I don't know why
$$- sum_{pmid q} frac{log p}{p} sum_{substack{rmid q \ p nmid r}} frac{mu(r)}{r}=-frac{phi(q)}{q} sum_{pmid q} frac{log p}{p-1}?$$



Can you help me?







elementary-number-theory arithmetic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 12 at 5:45

























asked Nov 12 at 5:23









arithmetic1

456




456












  • Can't you just prove the original statement when $q$ is a prime power and appeal to multiplicativity?
    – mathworker21
    Nov 12 at 5:40






  • 1




    @mathworker21 To obtain something multiplicative it would help to replace $log(d)$ by $d^{-s}$ and differentiate (at $s=0$) at the end. The RHS is the derivative of $prod_{p | q} (1-p^{-(s+1)})$
    – reuns
    Nov 12 at 6:15












  • Just to make sure, does the sum over $p$ only involve prime values of $p$?
    – Batominovski
    Nov 12 at 10:28


















  • Can't you just prove the original statement when $q$ is a prime power and appeal to multiplicativity?
    – mathworker21
    Nov 12 at 5:40






  • 1




    @mathworker21 To obtain something multiplicative it would help to replace $log(d)$ by $d^{-s}$ and differentiate (at $s=0$) at the end. The RHS is the derivative of $prod_{p | q} (1-p^{-(s+1)})$
    – reuns
    Nov 12 at 6:15












  • Just to make sure, does the sum over $p$ only involve prime values of $p$?
    – Batominovski
    Nov 12 at 10:28
















Can't you just prove the original statement when $q$ is a prime power and appeal to multiplicativity?
– mathworker21
Nov 12 at 5:40




Can't you just prove the original statement when $q$ is a prime power and appeal to multiplicativity?
– mathworker21
Nov 12 at 5:40




1




1




@mathworker21 To obtain something multiplicative it would help to replace $log(d)$ by $d^{-s}$ and differentiate (at $s=0$) at the end. The RHS is the derivative of $prod_{p | q} (1-p^{-(s+1)})$
– reuns
Nov 12 at 6:15






@mathworker21 To obtain something multiplicative it would help to replace $log(d)$ by $d^{-s}$ and differentiate (at $s=0$) at the end. The RHS is the derivative of $prod_{p | q} (1-p^{-(s+1)})$
– reuns
Nov 12 at 6:15














Just to make sure, does the sum over $p$ only involve prime values of $p$?
– Batominovski
Nov 12 at 10:28




Just to make sure, does the sum over $p$ only involve prime values of $p$?
– Batominovski
Nov 12 at 10:28










2 Answers
2






active

oldest

votes


















1














Let me write $n$ instead of $q$.
We have
begin{align}
sum_{d|n}frac{mu(d)log(d)}d
&=sum_{d|n}frac{mu(d)}dsum_{p|d}log(p)\
&=sum_{p|n}log(p)sum_{p|d|n}frac{mu(d)}d\
&=frac 1nsum_{p|n}log(p)sum_{p|d|n}mu(d)frac nd
end{align}

Write $n=p^em$ with $pnmid m$.
Then $varphi(n)=p^{e-1}(p-1)varphi(m)$ and
begin{align}
sum_{p|d|n}mu(d)frac nd
&=sum_{dmid m}sum_{i=1}^emu(p^id)frac{p^em}{p^id}\
&=sum_{dmid m}mu(pd)frac{p^em}{pd}\
&=-sum_{dmid m}mu(d)frac{p^em}{pd}\
&=-p^{e-1}varphi(m)\
&=-frac{varphi(n)}{p-1}
end{align}






share|cite|improve this answer























  • Thank you very much!
    – arithmetic1
    Nov 28 at 8:28





















0














I find a paper "On some identities in multiplicative number theory", Olivier Bordellès and Benoit Cloitre, arXiv:1804.05332v2 https://arxiv.org/abs/1804.05332v2



Using Dirichlet convolution
begin{eqnarray*}
- frac{varphi(n)}{n} sum_{p mid n} frac{log p}{p-1} &=& - frac{1}{n} sum_{p mid n} varphi left( frac{n}{p} right) log p \
&=& - frac{1}{n} left( Lambda ast varphi right) (n) \
&=& - frac{1}{n} left( - mu log ast mathbf{1} ast mu ast mathrm{id} right) (n) \
&=& frac{1}{n} left( mu log ast mathrm{id} right) (n) \
&=& sum_{d mid n} frac{mu(d) log d}{d}.
end{eqnarray*}






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994900%2fhow-to-prove-sum-d-mid-q-frac-mud-log-dd-frac-phiqq-sum-p-mid%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    Let me write $n$ instead of $q$.
    We have
    begin{align}
    sum_{d|n}frac{mu(d)log(d)}d
    &=sum_{d|n}frac{mu(d)}dsum_{p|d}log(p)\
    &=sum_{p|n}log(p)sum_{p|d|n}frac{mu(d)}d\
    &=frac 1nsum_{p|n}log(p)sum_{p|d|n}mu(d)frac nd
    end{align}

    Write $n=p^em$ with $pnmid m$.
    Then $varphi(n)=p^{e-1}(p-1)varphi(m)$ and
    begin{align}
    sum_{p|d|n}mu(d)frac nd
    &=sum_{dmid m}sum_{i=1}^emu(p^id)frac{p^em}{p^id}\
    &=sum_{dmid m}mu(pd)frac{p^em}{pd}\
    &=-sum_{dmid m}mu(d)frac{p^em}{pd}\
    &=-p^{e-1}varphi(m)\
    &=-frac{varphi(n)}{p-1}
    end{align}






    share|cite|improve this answer























    • Thank you very much!
      – arithmetic1
      Nov 28 at 8:28


















    1














    Let me write $n$ instead of $q$.
    We have
    begin{align}
    sum_{d|n}frac{mu(d)log(d)}d
    &=sum_{d|n}frac{mu(d)}dsum_{p|d}log(p)\
    &=sum_{p|n}log(p)sum_{p|d|n}frac{mu(d)}d\
    &=frac 1nsum_{p|n}log(p)sum_{p|d|n}mu(d)frac nd
    end{align}

    Write $n=p^em$ with $pnmid m$.
    Then $varphi(n)=p^{e-1}(p-1)varphi(m)$ and
    begin{align}
    sum_{p|d|n}mu(d)frac nd
    &=sum_{dmid m}sum_{i=1}^emu(p^id)frac{p^em}{p^id}\
    &=sum_{dmid m}mu(pd)frac{p^em}{pd}\
    &=-sum_{dmid m}mu(d)frac{p^em}{pd}\
    &=-p^{e-1}varphi(m)\
    &=-frac{varphi(n)}{p-1}
    end{align}






    share|cite|improve this answer























    • Thank you very much!
      – arithmetic1
      Nov 28 at 8:28
















    1












    1








    1






    Let me write $n$ instead of $q$.
    We have
    begin{align}
    sum_{d|n}frac{mu(d)log(d)}d
    &=sum_{d|n}frac{mu(d)}dsum_{p|d}log(p)\
    &=sum_{p|n}log(p)sum_{p|d|n}frac{mu(d)}d\
    &=frac 1nsum_{p|n}log(p)sum_{p|d|n}mu(d)frac nd
    end{align}

    Write $n=p^em$ with $pnmid m$.
    Then $varphi(n)=p^{e-1}(p-1)varphi(m)$ and
    begin{align}
    sum_{p|d|n}mu(d)frac nd
    &=sum_{dmid m}sum_{i=1}^emu(p^id)frac{p^em}{p^id}\
    &=sum_{dmid m}mu(pd)frac{p^em}{pd}\
    &=-sum_{dmid m}mu(d)frac{p^em}{pd}\
    &=-p^{e-1}varphi(m)\
    &=-frac{varphi(n)}{p-1}
    end{align}






    share|cite|improve this answer














    Let me write $n$ instead of $q$.
    We have
    begin{align}
    sum_{d|n}frac{mu(d)log(d)}d
    &=sum_{d|n}frac{mu(d)}dsum_{p|d}log(p)\
    &=sum_{p|n}log(p)sum_{p|d|n}frac{mu(d)}d\
    &=frac 1nsum_{p|n}log(p)sum_{p|d|n}mu(d)frac nd
    end{align}

    Write $n=p^em$ with $pnmid m$.
    Then $varphi(n)=p^{e-1}(p-1)varphi(m)$ and
    begin{align}
    sum_{p|d|n}mu(d)frac nd
    &=sum_{dmid m}sum_{i=1}^emu(p^id)frac{p^em}{p^id}\
    &=sum_{dmid m}mu(pd)frac{p^em}{pd}\
    &=-sum_{dmid m}mu(d)frac{p^em}{pd}\
    &=-p^{e-1}varphi(m)\
    &=-frac{varphi(n)}{p-1}
    end{align}







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Nov 12 at 9:24

























    answered Nov 12 at 9:06









    Fabio Lucchini

    7,82311326




    7,82311326












    • Thank you very much!
      – arithmetic1
      Nov 28 at 8:28




















    • Thank you very much!
      – arithmetic1
      Nov 28 at 8:28


















    Thank you very much!
    – arithmetic1
    Nov 28 at 8:28






    Thank you very much!
    – arithmetic1
    Nov 28 at 8:28













    0














    I find a paper "On some identities in multiplicative number theory", Olivier Bordellès and Benoit Cloitre, arXiv:1804.05332v2 https://arxiv.org/abs/1804.05332v2



    Using Dirichlet convolution
    begin{eqnarray*}
    - frac{varphi(n)}{n} sum_{p mid n} frac{log p}{p-1} &=& - frac{1}{n} sum_{p mid n} varphi left( frac{n}{p} right) log p \
    &=& - frac{1}{n} left( Lambda ast varphi right) (n) \
    &=& - frac{1}{n} left( - mu log ast mathbf{1} ast mu ast mathrm{id} right) (n) \
    &=& frac{1}{n} left( mu log ast mathrm{id} right) (n) \
    &=& sum_{d mid n} frac{mu(d) log d}{d}.
    end{eqnarray*}






    share|cite|improve this answer


























      0














      I find a paper "On some identities in multiplicative number theory", Olivier Bordellès and Benoit Cloitre, arXiv:1804.05332v2 https://arxiv.org/abs/1804.05332v2



      Using Dirichlet convolution
      begin{eqnarray*}
      - frac{varphi(n)}{n} sum_{p mid n} frac{log p}{p-1} &=& - frac{1}{n} sum_{p mid n} varphi left( frac{n}{p} right) log p \
      &=& - frac{1}{n} left( Lambda ast varphi right) (n) \
      &=& - frac{1}{n} left( - mu log ast mathbf{1} ast mu ast mathrm{id} right) (n) \
      &=& frac{1}{n} left( mu log ast mathrm{id} right) (n) \
      &=& sum_{d mid n} frac{mu(d) log d}{d}.
      end{eqnarray*}






      share|cite|improve this answer
























        0












        0








        0






        I find a paper "On some identities in multiplicative number theory", Olivier Bordellès and Benoit Cloitre, arXiv:1804.05332v2 https://arxiv.org/abs/1804.05332v2



        Using Dirichlet convolution
        begin{eqnarray*}
        - frac{varphi(n)}{n} sum_{p mid n} frac{log p}{p-1} &=& - frac{1}{n} sum_{p mid n} varphi left( frac{n}{p} right) log p \
        &=& - frac{1}{n} left( Lambda ast varphi right) (n) \
        &=& - frac{1}{n} left( - mu log ast mathbf{1} ast mu ast mathrm{id} right) (n) \
        &=& frac{1}{n} left( mu log ast mathrm{id} right) (n) \
        &=& sum_{d mid n} frac{mu(d) log d}{d}.
        end{eqnarray*}






        share|cite|improve this answer












        I find a paper "On some identities in multiplicative number theory", Olivier Bordellès and Benoit Cloitre, arXiv:1804.05332v2 https://arxiv.org/abs/1804.05332v2



        Using Dirichlet convolution
        begin{eqnarray*}
        - frac{varphi(n)}{n} sum_{p mid n} frac{log p}{p-1} &=& - frac{1}{n} sum_{p mid n} varphi left( frac{n}{p} right) log p \
        &=& - frac{1}{n} left( Lambda ast varphi right) (n) \
        &=& - frac{1}{n} left( - mu log ast mathbf{1} ast mu ast mathrm{id} right) (n) \
        &=& frac{1}{n} left( mu log ast mathrm{id} right) (n) \
        &=& sum_{d mid n} frac{mu(d) log d}{d}.
        end{eqnarray*}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 28 at 8:26









        arithmetic1

        456




        456






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994900%2fhow-to-prove-sum-d-mid-q-frac-mud-log-dd-frac-phiqq-sum-p-mid%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            To store a contact into the json file from server.js file using a class in NodeJS

            Marschland

            Redirect URL with Chrome Remote Debugging Android Devices