Evaluate the limit for a function defined on [0,1]
$begingroup$
The limit is a Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)$$
$delta x=frac{1}{n}$, so I distribute it to the terms to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{i}{n^3} right)$$
Now that they have similar denominators I multiply $frac{i}{n^3}cdot(n^3)$ to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{2i}{n^6} right)$$
Combining the terms I get $$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{2i^4}{n^6}right)$$
Knowing that $i^2=frac{n(n+1)(2n+1)}{6}$ I split up the $i^4$ into$$lim_{nrightarrowinfty}frac{2}{n^6}sum_{i=1}^nleft(frac{n(n+1)(2n+1)}{6}right)+ left(frac{n(n+1)(2n+1)}{6}right)$$
Am I on the right track?
calculus riemann-sum
$endgroup$
add a comment |
$begingroup$
The limit is a Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)$$
$delta x=frac{1}{n}$, so I distribute it to the terms to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{i}{n^3} right)$$
Now that they have similar denominators I multiply $frac{i}{n^3}cdot(n^3)$ to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{2i}{n^6} right)$$
Combining the terms I get $$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{2i^4}{n^6}right)$$
Knowing that $i^2=frac{n(n+1)(2n+1)}{6}$ I split up the $i^4$ into$$lim_{nrightarrowinfty}frac{2}{n^6}sum_{i=1}^nleft(frac{n(n+1)(2n+1)}{6}right)+ left(frac{n(n+1)(2n+1)}{6}right)$$
Am I on the right track?
calculus riemann-sum
$endgroup$
add a comment |
$begingroup$
The limit is a Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)$$
$delta x=frac{1}{n}$, so I distribute it to the terms to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{i}{n^3} right)$$
Now that they have similar denominators I multiply $frac{i}{n^3}cdot(n^3)$ to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{2i}{n^6} right)$$
Combining the terms I get $$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{2i^4}{n^6}right)$$
Knowing that $i^2=frac{n(n+1)(2n+1)}{6}$ I split up the $i^4$ into$$lim_{nrightarrowinfty}frac{2}{n^6}sum_{i=1}^nleft(frac{n(n+1)(2n+1)}{6}right)+ left(frac{n(n+1)(2n+1)}{6}right)$$
Am I on the right track?
calculus riemann-sum
$endgroup$
The limit is a Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)$$
$delta x=frac{1}{n}$, so I distribute it to the terms to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{i}{n^3} right)$$
Now that they have similar denominators I multiply $frac{i}{n^3}cdot(n^3)$ to get
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^6}+frac{2i}{n^6} right)$$
Combining the terms I get $$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{2i^4}{n^6}right)$$
Knowing that $i^2=frac{n(n+1)(2n+1)}{6}$ I split up the $i^4$ into$$lim_{nrightarrowinfty}frac{2}{n^6}sum_{i=1}^nleft(frac{n(n+1)(2n+1)}{6}right)+ left(frac{n(n+1)(2n+1)}{6}right)$$
Am I on the right track?
calculus riemann-sum
calculus riemann-sum
asked Dec 10 '18 at 23:16
Eric BrownEric Brown
737
737
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have that by Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)=lim_{nrightarrowinfty}frac1nsum_{i=1}^nleft(frac{i^4}{n^4}+frac{i}{n} right)=int_0^1(x^4+x) dx$$
As an alternative refer to Faulhaber's formula.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034628%2fevaluate-the-limit-for-a-function-defined-on-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have that by Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)=lim_{nrightarrowinfty}frac1nsum_{i=1}^nleft(frac{i^4}{n^4}+frac{i}{n} right)=int_0^1(x^4+x) dx$$
As an alternative refer to Faulhaber's formula.
$endgroup$
add a comment |
$begingroup$
We have that by Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)=lim_{nrightarrowinfty}frac1nsum_{i=1}^nleft(frac{i^4}{n^4}+frac{i}{n} right)=int_0^1(x^4+x) dx$$
As an alternative refer to Faulhaber's formula.
$endgroup$
add a comment |
$begingroup$
We have that by Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)=lim_{nrightarrowinfty}frac1nsum_{i=1}^nleft(frac{i^4}{n^4}+frac{i}{n} right)=int_0^1(x^4+x) dx$$
As an alternative refer to Faulhaber's formula.
$endgroup$
We have that by Riemann sum
$$lim_{nrightarrowinfty}sum_{i=1}^nleft(frac{i^4}{n^5}+frac{i}{n^2} right)=lim_{nrightarrowinfty}frac1nsum_{i=1}^nleft(frac{i^4}{n^4}+frac{i}{n} right)=int_0^1(x^4+x) dx$$
As an alternative refer to Faulhaber's formula.
answered Dec 10 '18 at 23:18
gimusigimusi
92.8k84494
92.8k84494
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034628%2fevaluate-the-limit-for-a-function-defined-on-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown