Evaluation of $sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}$
$begingroup$
Evaluation of $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} = $$
$bf{My; Try::}$ I have solved Using Direct formula::
$$sin frac{pi}{n}cdot sin frac{2pi}{n}cdot......sin frac{(n-1)pi}{n} = frac{n}{2^{n-1}}$$
Now Put $n=7;,$ We get
$$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}cdot sin frac{4pi}{7}cdot sin frac{5pi}{7}cdot sin frac{6pi}{7}=frac{7}{2^{7-1}}$$
So $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} =frac{sqrt{7}}{8}$$
Now my question is how can we solve it without using Direct Formula, Help me
Thanks
trigonometry
$endgroup$
add a comment |
$begingroup$
Evaluation of $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} = $$
$bf{My; Try::}$ I have solved Using Direct formula::
$$sin frac{pi}{n}cdot sin frac{2pi}{n}cdot......sin frac{(n-1)pi}{n} = frac{n}{2^{n-1}}$$
Now Put $n=7;,$ We get
$$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}cdot sin frac{4pi}{7}cdot sin frac{5pi}{7}cdot sin frac{6pi}{7}=frac{7}{2^{7-1}}$$
So $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} =frac{sqrt{7}}{8}$$
Now my question is how can we solve it without using Direct Formula, Help me
Thanks
trigonometry
$endgroup$
$begingroup$
Related : math.stackexchange.com/questions/818749/… and math.stackexchange.com/questions/1745060/…
$endgroup$
– lab bhattacharjee
May 14 '16 at 16:09
add a comment |
$begingroup$
Evaluation of $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} = $$
$bf{My; Try::}$ I have solved Using Direct formula::
$$sin frac{pi}{n}cdot sin frac{2pi}{n}cdot......sin frac{(n-1)pi}{n} = frac{n}{2^{n-1}}$$
Now Put $n=7;,$ We get
$$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}cdot sin frac{4pi}{7}cdot sin frac{5pi}{7}cdot sin frac{6pi}{7}=frac{7}{2^{7-1}}$$
So $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} =frac{sqrt{7}}{8}$$
Now my question is how can we solve it without using Direct Formula, Help me
Thanks
trigonometry
$endgroup$
Evaluation of $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} = $$
$bf{My; Try::}$ I have solved Using Direct formula::
$$sin frac{pi}{n}cdot sin frac{2pi}{n}cdot......sin frac{(n-1)pi}{n} = frac{n}{2^{n-1}}$$
Now Put $n=7;,$ We get
$$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}cdot sin frac{4pi}{7}cdot sin frac{5pi}{7}cdot sin frac{6pi}{7}=frac{7}{2^{7-1}}$$
So $$sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7} =frac{sqrt{7}}{8}$$
Now my question is how can we solve it without using Direct Formula, Help me
Thanks
trigonometry
trigonometry
edited May 14 '16 at 8:21
Jean-Claude Arbaut
14.7k63464
14.7k63464
asked May 14 '16 at 7:56
juantheronjuantheron
34.2k1147142
34.2k1147142
$begingroup$
Related : math.stackexchange.com/questions/818749/… and math.stackexchange.com/questions/1745060/…
$endgroup$
– lab bhattacharjee
May 14 '16 at 16:09
add a comment |
$begingroup$
Related : math.stackexchange.com/questions/818749/… and math.stackexchange.com/questions/1745060/…
$endgroup$
– lab bhattacharjee
May 14 '16 at 16:09
$begingroup$
Related : math.stackexchange.com/questions/818749/… and math.stackexchange.com/questions/1745060/…
$endgroup$
– lab bhattacharjee
May 14 '16 at 16:09
$begingroup$
Related : math.stackexchange.com/questions/818749/… and math.stackexchange.com/questions/1745060/…
$endgroup$
– lab bhattacharjee
May 14 '16 at 16:09
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$
begin{align}
prod_{k=1}^3sinleft(frac{kpi}7right)^2
&=prod_{k=1}^6sinleft(frac{kpi}7right)tag{1}\
&=-frac1{64}prod_{k=1}^6left(e^{ikpi/7}-e^{-ikpi/7}right)tag{2}\
&=frac1{64}prod_{k=1}^6left(1-e^{-i2kpi/7}right)tag{3}\
&=frac1{64}lim_{zto1}prod_{k=1}^6left(z-e^{-i2kpi/7}right)tag{4}\
&=frac1{64}lim_{zto1}frac{z^7-1}{z-1}tag{5}\[6pt]
&=frac7{64}tag{6}
end{align}
$$
Explanation:
$(1)$: $sin(x)=sin(pi-x)$
$(2)$: $sin(x)=frac{e^{ix}-e^{-ix}}{2i}$
$(3)$: pull $prodlimits_{k=1}^6e^{ikpi/7}=-1$ out of the product
$(4)$: $1=limlimits_{zto1}z$
$(5)$: $prodlimits_{k=1}^6left(z-e^{-i2kpi/7}right)=frac{z^7-1}{z-1}$
$(6)$: evaluate limit
Therefore, taking the square root of $(6)$, we get
$$
prod_{k=1}^3sinleft(frac{kpi}7right)=frac{sqrt7}8tag{7}
$$
$endgroup$
add a comment |
$begingroup$
Using $2sin asin b=cos(a-b)-cos(a+b)$ and $2sin acos b=sin(a+b)+sin(a-b)$, write
$$sin frac{pi}7cdotsin frac{2pi}7cdot sin frac{3pi}7 = frac12left(cosfrac{pi}7-cosfrac{3pi}7right)sinfrac{3pi}7=frac14left(sinfrac{4pi}7+sinfrac{2pi}7-sinfrac{pi}7right)\=frac14left(sinfrac{2pi}7+sinfrac{4pi}7+sinfrac{8pi}7right)$$
Then have a look at this question: Trigo Problem : Find the value of $sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7}$
$endgroup$
add a comment |
$begingroup$
This is a Gauss sum in disguise, but it can be computed through elementary geometry, without resorting to algebraic number theory. Let us consider a regular heptagon $P_1 P_2 P_3 P_4 P_5 P_6 P_7$ with center $O$ and take $A=P_1, B=P_5, C=P_6$. The angles of $ABC$ are $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$. By Euler's formula and the sine theorem
$$ [ABC] = frac{abc}{4R} = 2R^2 sin(A)sin(B)sin(C) $$
but we also have
$$[ABC] = [AOB]+[BOC]-[AOC] = frac{R^2}{2}left(sinfrac{4pi}{7}+sinfrac{2pi}{7}-sinfrac{6pi}{7}right) $$
hence the claim is equivalent to:
$$ sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7} = frac{1}{2}sqrt{7}. $$
and since the values of the sine function at $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$ are positive, the claim is also equivalent to:
$$ left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right)=frac{7}{8}. $$
Chebyshev polynomials ensure that $cosfrac{2pi}{7},cosfrac{4pi}{7},cosfrac{8pi}{7}$ are algebraic conjugates over $mathbb{Q}$, and they are the roots of $p(x)=8x^3+4x^2-4x-1$. By factoring such polynomial over $mathbb{R}$ it follows that
$$ p(x) = 8x^3+4x^2-4x-1 = 8left(x-cosfrac{2pi}{7}right)left(x-cosfrac{4pi}{7}right)left(x-cosfrac{8pi}{7}right) $$
and by evaluating at $x=1$ we get
$$ 7 = p(1) = 8left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right) $$
QED.
$endgroup$
add a comment |
$begingroup$
Hint;
Assume
$$ theta = (npi)/7$$
$$implies 4theta = npi -3theta$$
Take the sine on both the sides
An apply the required manipulations
You should get a cubic in $sin^2 theta$
Since we have defined out $theta$, we are quite aware what the roots are going to be
So the numerical part in the end divided by the coefficient of $x^3$ gives you
$$ {{[sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}}]}^2 = 7/64$$
That should be it
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1784712%2fevaluation-of-sin-frac-pi7-cdot-sin-frac2-pi7-cdot-sin-frac3-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
begin{align}
prod_{k=1}^3sinleft(frac{kpi}7right)^2
&=prod_{k=1}^6sinleft(frac{kpi}7right)tag{1}\
&=-frac1{64}prod_{k=1}^6left(e^{ikpi/7}-e^{-ikpi/7}right)tag{2}\
&=frac1{64}prod_{k=1}^6left(1-e^{-i2kpi/7}right)tag{3}\
&=frac1{64}lim_{zto1}prod_{k=1}^6left(z-e^{-i2kpi/7}right)tag{4}\
&=frac1{64}lim_{zto1}frac{z^7-1}{z-1}tag{5}\[6pt]
&=frac7{64}tag{6}
end{align}
$$
Explanation:
$(1)$: $sin(x)=sin(pi-x)$
$(2)$: $sin(x)=frac{e^{ix}-e^{-ix}}{2i}$
$(3)$: pull $prodlimits_{k=1}^6e^{ikpi/7}=-1$ out of the product
$(4)$: $1=limlimits_{zto1}z$
$(5)$: $prodlimits_{k=1}^6left(z-e^{-i2kpi/7}right)=frac{z^7-1}{z-1}$
$(6)$: evaluate limit
Therefore, taking the square root of $(6)$, we get
$$
prod_{k=1}^3sinleft(frac{kpi}7right)=frac{sqrt7}8tag{7}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
prod_{k=1}^3sinleft(frac{kpi}7right)^2
&=prod_{k=1}^6sinleft(frac{kpi}7right)tag{1}\
&=-frac1{64}prod_{k=1}^6left(e^{ikpi/7}-e^{-ikpi/7}right)tag{2}\
&=frac1{64}prod_{k=1}^6left(1-e^{-i2kpi/7}right)tag{3}\
&=frac1{64}lim_{zto1}prod_{k=1}^6left(z-e^{-i2kpi/7}right)tag{4}\
&=frac1{64}lim_{zto1}frac{z^7-1}{z-1}tag{5}\[6pt]
&=frac7{64}tag{6}
end{align}
$$
Explanation:
$(1)$: $sin(x)=sin(pi-x)$
$(2)$: $sin(x)=frac{e^{ix}-e^{-ix}}{2i}$
$(3)$: pull $prodlimits_{k=1}^6e^{ikpi/7}=-1$ out of the product
$(4)$: $1=limlimits_{zto1}z$
$(5)$: $prodlimits_{k=1}^6left(z-e^{-i2kpi/7}right)=frac{z^7-1}{z-1}$
$(6)$: evaluate limit
Therefore, taking the square root of $(6)$, we get
$$
prod_{k=1}^3sinleft(frac{kpi}7right)=frac{sqrt7}8tag{7}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
prod_{k=1}^3sinleft(frac{kpi}7right)^2
&=prod_{k=1}^6sinleft(frac{kpi}7right)tag{1}\
&=-frac1{64}prod_{k=1}^6left(e^{ikpi/7}-e^{-ikpi/7}right)tag{2}\
&=frac1{64}prod_{k=1}^6left(1-e^{-i2kpi/7}right)tag{3}\
&=frac1{64}lim_{zto1}prod_{k=1}^6left(z-e^{-i2kpi/7}right)tag{4}\
&=frac1{64}lim_{zto1}frac{z^7-1}{z-1}tag{5}\[6pt]
&=frac7{64}tag{6}
end{align}
$$
Explanation:
$(1)$: $sin(x)=sin(pi-x)$
$(2)$: $sin(x)=frac{e^{ix}-e^{-ix}}{2i}$
$(3)$: pull $prodlimits_{k=1}^6e^{ikpi/7}=-1$ out of the product
$(4)$: $1=limlimits_{zto1}z$
$(5)$: $prodlimits_{k=1}^6left(z-e^{-i2kpi/7}right)=frac{z^7-1}{z-1}$
$(6)$: evaluate limit
Therefore, taking the square root of $(6)$, we get
$$
prod_{k=1}^3sinleft(frac{kpi}7right)=frac{sqrt7}8tag{7}
$$
$endgroup$
$$
begin{align}
prod_{k=1}^3sinleft(frac{kpi}7right)^2
&=prod_{k=1}^6sinleft(frac{kpi}7right)tag{1}\
&=-frac1{64}prod_{k=1}^6left(e^{ikpi/7}-e^{-ikpi/7}right)tag{2}\
&=frac1{64}prod_{k=1}^6left(1-e^{-i2kpi/7}right)tag{3}\
&=frac1{64}lim_{zto1}prod_{k=1}^6left(z-e^{-i2kpi/7}right)tag{4}\
&=frac1{64}lim_{zto1}frac{z^7-1}{z-1}tag{5}\[6pt]
&=frac7{64}tag{6}
end{align}
$$
Explanation:
$(1)$: $sin(x)=sin(pi-x)$
$(2)$: $sin(x)=frac{e^{ix}-e^{-ix}}{2i}$
$(3)$: pull $prodlimits_{k=1}^6e^{ikpi/7}=-1$ out of the product
$(4)$: $1=limlimits_{zto1}z$
$(5)$: $prodlimits_{k=1}^6left(z-e^{-i2kpi/7}right)=frac{z^7-1}{z-1}$
$(6)$: evaluate limit
Therefore, taking the square root of $(6)$, we get
$$
prod_{k=1}^3sinleft(frac{kpi}7right)=frac{sqrt7}8tag{7}
$$
edited May 14 '16 at 11:43
answered May 14 '16 at 9:32
robjohn♦robjohn
267k27307630
267k27307630
add a comment |
add a comment |
$begingroup$
Using $2sin asin b=cos(a-b)-cos(a+b)$ and $2sin acos b=sin(a+b)+sin(a-b)$, write
$$sin frac{pi}7cdotsin frac{2pi}7cdot sin frac{3pi}7 = frac12left(cosfrac{pi}7-cosfrac{3pi}7right)sinfrac{3pi}7=frac14left(sinfrac{4pi}7+sinfrac{2pi}7-sinfrac{pi}7right)\=frac14left(sinfrac{2pi}7+sinfrac{4pi}7+sinfrac{8pi}7right)$$
Then have a look at this question: Trigo Problem : Find the value of $sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7}$
$endgroup$
add a comment |
$begingroup$
Using $2sin asin b=cos(a-b)-cos(a+b)$ and $2sin acos b=sin(a+b)+sin(a-b)$, write
$$sin frac{pi}7cdotsin frac{2pi}7cdot sin frac{3pi}7 = frac12left(cosfrac{pi}7-cosfrac{3pi}7right)sinfrac{3pi}7=frac14left(sinfrac{4pi}7+sinfrac{2pi}7-sinfrac{pi}7right)\=frac14left(sinfrac{2pi}7+sinfrac{4pi}7+sinfrac{8pi}7right)$$
Then have a look at this question: Trigo Problem : Find the value of $sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7}$
$endgroup$
add a comment |
$begingroup$
Using $2sin asin b=cos(a-b)-cos(a+b)$ and $2sin acos b=sin(a+b)+sin(a-b)$, write
$$sin frac{pi}7cdotsin frac{2pi}7cdot sin frac{3pi}7 = frac12left(cosfrac{pi}7-cosfrac{3pi}7right)sinfrac{3pi}7=frac14left(sinfrac{4pi}7+sinfrac{2pi}7-sinfrac{pi}7right)\=frac14left(sinfrac{2pi}7+sinfrac{4pi}7+sinfrac{8pi}7right)$$
Then have a look at this question: Trigo Problem : Find the value of $sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7}$
$endgroup$
Using $2sin asin b=cos(a-b)-cos(a+b)$ and $2sin acos b=sin(a+b)+sin(a-b)$, write
$$sin frac{pi}7cdotsin frac{2pi}7cdot sin frac{3pi}7 = frac12left(cosfrac{pi}7-cosfrac{3pi}7right)sinfrac{3pi}7=frac14left(sinfrac{4pi}7+sinfrac{2pi}7-sinfrac{pi}7right)\=frac14left(sinfrac{2pi}7+sinfrac{4pi}7+sinfrac{8pi}7right)$$
Then have a look at this question: Trigo Problem : Find the value of $sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7}$
edited Apr 13 '17 at 12:19
Community♦
1
1
answered May 14 '16 at 8:20
Jean-Claude ArbautJean-Claude Arbaut
14.7k63464
14.7k63464
add a comment |
add a comment |
$begingroup$
This is a Gauss sum in disguise, but it can be computed through elementary geometry, without resorting to algebraic number theory. Let us consider a regular heptagon $P_1 P_2 P_3 P_4 P_5 P_6 P_7$ with center $O$ and take $A=P_1, B=P_5, C=P_6$. The angles of $ABC$ are $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$. By Euler's formula and the sine theorem
$$ [ABC] = frac{abc}{4R} = 2R^2 sin(A)sin(B)sin(C) $$
but we also have
$$[ABC] = [AOB]+[BOC]-[AOC] = frac{R^2}{2}left(sinfrac{4pi}{7}+sinfrac{2pi}{7}-sinfrac{6pi}{7}right) $$
hence the claim is equivalent to:
$$ sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7} = frac{1}{2}sqrt{7}. $$
and since the values of the sine function at $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$ are positive, the claim is also equivalent to:
$$ left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right)=frac{7}{8}. $$
Chebyshev polynomials ensure that $cosfrac{2pi}{7},cosfrac{4pi}{7},cosfrac{8pi}{7}$ are algebraic conjugates over $mathbb{Q}$, and they are the roots of $p(x)=8x^3+4x^2-4x-1$. By factoring such polynomial over $mathbb{R}$ it follows that
$$ p(x) = 8x^3+4x^2-4x-1 = 8left(x-cosfrac{2pi}{7}right)left(x-cosfrac{4pi}{7}right)left(x-cosfrac{8pi}{7}right) $$
and by evaluating at $x=1$ we get
$$ 7 = p(1) = 8left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right) $$
QED.
$endgroup$
add a comment |
$begingroup$
This is a Gauss sum in disguise, but it can be computed through elementary geometry, without resorting to algebraic number theory. Let us consider a regular heptagon $P_1 P_2 P_3 P_4 P_5 P_6 P_7$ with center $O$ and take $A=P_1, B=P_5, C=P_6$. The angles of $ABC$ are $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$. By Euler's formula and the sine theorem
$$ [ABC] = frac{abc}{4R} = 2R^2 sin(A)sin(B)sin(C) $$
but we also have
$$[ABC] = [AOB]+[BOC]-[AOC] = frac{R^2}{2}left(sinfrac{4pi}{7}+sinfrac{2pi}{7}-sinfrac{6pi}{7}right) $$
hence the claim is equivalent to:
$$ sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7} = frac{1}{2}sqrt{7}. $$
and since the values of the sine function at $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$ are positive, the claim is also equivalent to:
$$ left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right)=frac{7}{8}. $$
Chebyshev polynomials ensure that $cosfrac{2pi}{7},cosfrac{4pi}{7},cosfrac{8pi}{7}$ are algebraic conjugates over $mathbb{Q}$, and they are the roots of $p(x)=8x^3+4x^2-4x-1$. By factoring such polynomial over $mathbb{R}$ it follows that
$$ p(x) = 8x^3+4x^2-4x-1 = 8left(x-cosfrac{2pi}{7}right)left(x-cosfrac{4pi}{7}right)left(x-cosfrac{8pi}{7}right) $$
and by evaluating at $x=1$ we get
$$ 7 = p(1) = 8left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right) $$
QED.
$endgroup$
add a comment |
$begingroup$
This is a Gauss sum in disguise, but it can be computed through elementary geometry, without resorting to algebraic number theory. Let us consider a regular heptagon $P_1 P_2 P_3 P_4 P_5 P_6 P_7$ with center $O$ and take $A=P_1, B=P_5, C=P_6$. The angles of $ABC$ are $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$. By Euler's formula and the sine theorem
$$ [ABC] = frac{abc}{4R} = 2R^2 sin(A)sin(B)sin(C) $$
but we also have
$$[ABC] = [AOB]+[BOC]-[AOC] = frac{R^2}{2}left(sinfrac{4pi}{7}+sinfrac{2pi}{7}-sinfrac{6pi}{7}right) $$
hence the claim is equivalent to:
$$ sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7} = frac{1}{2}sqrt{7}. $$
and since the values of the sine function at $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$ are positive, the claim is also equivalent to:
$$ left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right)=frac{7}{8}. $$
Chebyshev polynomials ensure that $cosfrac{2pi}{7},cosfrac{4pi}{7},cosfrac{8pi}{7}$ are algebraic conjugates over $mathbb{Q}$, and they are the roots of $p(x)=8x^3+4x^2-4x-1$. By factoring such polynomial over $mathbb{R}$ it follows that
$$ p(x) = 8x^3+4x^2-4x-1 = 8left(x-cosfrac{2pi}{7}right)left(x-cosfrac{4pi}{7}right)left(x-cosfrac{8pi}{7}right) $$
and by evaluating at $x=1$ we get
$$ 7 = p(1) = 8left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right) $$
QED.
$endgroup$
This is a Gauss sum in disguise, but it can be computed through elementary geometry, without resorting to algebraic number theory. Let us consider a regular heptagon $P_1 P_2 P_3 P_4 P_5 P_6 P_7$ with center $O$ and take $A=P_1, B=P_5, C=P_6$. The angles of $ABC$ are $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$. By Euler's formula and the sine theorem
$$ [ABC] = frac{abc}{4R} = 2R^2 sin(A)sin(B)sin(C) $$
but we also have
$$[ABC] = [AOB]+[BOC]-[AOC] = frac{R^2}{2}left(sinfrac{4pi}{7}+sinfrac{2pi}{7}-sinfrac{6pi}{7}right) $$
hence the claim is equivalent to:
$$ sinfrac{2pi}{7}+sinfrac{4pi}{7}+sinfrac{8pi}{7} = frac{1}{2}sqrt{7}. $$
and since the values of the sine function at $frac{pi}{7},frac{2pi}{7},frac{4pi}{7}$ are positive, the claim is also equivalent to:
$$ left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right)=frac{7}{8}. $$
Chebyshev polynomials ensure that $cosfrac{2pi}{7},cosfrac{4pi}{7},cosfrac{8pi}{7}$ are algebraic conjugates over $mathbb{Q}$, and they are the roots of $p(x)=8x^3+4x^2-4x-1$. By factoring such polynomial over $mathbb{R}$ it follows that
$$ p(x) = 8x^3+4x^2-4x-1 = 8left(x-cosfrac{2pi}{7}right)left(x-cosfrac{4pi}{7}right)left(x-cosfrac{8pi}{7}right) $$
and by evaluating at $x=1$ we get
$$ 7 = p(1) = 8left(1-cosfrac{2pi}{7}right)left(1-cosfrac{4pi}{7}right)left(1-cosfrac{8pi}{7}right) $$
QED.
answered Dec 11 '18 at 1:58
Jack D'AurizioJack D'Aurizio
1
1
add a comment |
add a comment |
$begingroup$
Hint;
Assume
$$ theta = (npi)/7$$
$$implies 4theta = npi -3theta$$
Take the sine on both the sides
An apply the required manipulations
You should get a cubic in $sin^2 theta$
Since we have defined out $theta$, we are quite aware what the roots are going to be
So the numerical part in the end divided by the coefficient of $x^3$ gives you
$$ {{[sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}}]}^2 = 7/64$$
That should be it
$endgroup$
add a comment |
$begingroup$
Hint;
Assume
$$ theta = (npi)/7$$
$$implies 4theta = npi -3theta$$
Take the sine on both the sides
An apply the required manipulations
You should get a cubic in $sin^2 theta$
Since we have defined out $theta$, we are quite aware what the roots are going to be
So the numerical part in the end divided by the coefficient of $x^3$ gives you
$$ {{[sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}}]}^2 = 7/64$$
That should be it
$endgroup$
add a comment |
$begingroup$
Hint;
Assume
$$ theta = (npi)/7$$
$$implies 4theta = npi -3theta$$
Take the sine on both the sides
An apply the required manipulations
You should get a cubic in $sin^2 theta$
Since we have defined out $theta$, we are quite aware what the roots are going to be
So the numerical part in the end divided by the coefficient of $x^3$ gives you
$$ {{[sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}}]}^2 = 7/64$$
That should be it
$endgroup$
Hint;
Assume
$$ theta = (npi)/7$$
$$implies 4theta = npi -3theta$$
Take the sine on both the sides
An apply the required manipulations
You should get a cubic in $sin^2 theta$
Since we have defined out $theta$, we are quite aware what the roots are going to be
So the numerical part in the end divided by the coefficient of $x^3$ gives you
$$ {{[sin frac{pi}{7}cdot sin frac{2pi}{7}cdot sin frac{3pi}{7}}]}^2 = 7/64$$
That should be it
answered Jul 8 '16 at 9:48
sidt36sidt36
151110
151110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1784712%2fevaluation-of-sin-frac-pi7-cdot-sin-frac2-pi7-cdot-sin-frac3-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Related : math.stackexchange.com/questions/818749/… and math.stackexchange.com/questions/1745060/…
$endgroup$
– lab bhattacharjee
May 14 '16 at 16:09