$operatorname{ord}_p(sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i))=?$
$begingroup$
Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:
- $forall x in mathbb{F}_p[overline {T(x)}=x]$
- $forall x in mathbb{F}_p[T(x)^p=T(x)]$
Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:
$forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$
$exists x in mathbb{F}_p[psi(x) neq 1]$
Moreover, assume $1 leq k leq p-2$.
By the way, the overline notation indicates reduction mod p.
I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$
I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.
abstract-algebra number-theory prime-numbers finite-fields p-adic-number-theory
$endgroup$
add a comment |
$begingroup$
Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:
- $forall x in mathbb{F}_p[overline {T(x)}=x]$
- $forall x in mathbb{F}_p[T(x)^p=T(x)]$
Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:
$forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$
$exists x in mathbb{F}_p[psi(x) neq 1]$
Moreover, assume $1 leq k leq p-2$.
By the way, the overline notation indicates reduction mod p.
I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$
I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.
abstract-algebra number-theory prime-numbers finite-fields p-adic-number-theory
$endgroup$
1
$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24
$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48
add a comment |
$begingroup$
Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:
- $forall x in mathbb{F}_p[overline {T(x)}=x]$
- $forall x in mathbb{F}_p[T(x)^p=T(x)]$
Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:
$forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$
$exists x in mathbb{F}_p[psi(x) neq 1]$
Moreover, assume $1 leq k leq p-2$.
By the way, the overline notation indicates reduction mod p.
I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$
I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.
abstract-algebra number-theory prime-numbers finite-fields p-adic-number-theory
$endgroup$
Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:
- $forall x in mathbb{F}_p[overline {T(x)}=x]$
- $forall x in mathbb{F}_p[T(x)^p=T(x)]$
Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:
$forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$
$exists x in mathbb{F}_p[psi(x) neq 1]$
Moreover, assume $1 leq k leq p-2$.
By the way, the overline notation indicates reduction mod p.
I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$
I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.
abstract-algebra number-theory prime-numbers finite-fields p-adic-number-theory
abstract-algebra number-theory prime-numbers finite-fields p-adic-number-theory
edited Dec 19 '18 at 5:35
Kemono Chen
3,0521743
3,0521743
asked Dec 10 '18 at 23:04
Pascal's WagerPascal's Wager
357315
357315
1
$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24
$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48
add a comment |
1
$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24
$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48
1
1
$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24
$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24
$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48
$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034615%2foperatornameord-p-sum-i-0p-1t-overline-ip-1-k-psi-overline-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034615%2foperatornameord-p-sum-i-0p-1t-overline-ip-1-k-psi-overline-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24
$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48