$operatorname{ord}_p(sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i))=?$












1












$begingroup$


Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:




  1. $forall x in mathbb{F}_p[overline {T(x)}=x]$

  2. $forall x in mathbb{F}_p[T(x)^p=T(x)]$


Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:




  1. $forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$


  2. $exists x in mathbb{F}_p[psi(x) neq 1]$



Moreover, assume $1 leq k leq p-2$.



By the way, the overline notation indicates reduction mod p.




I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$






I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
    $endgroup$
    – reuns
    Dec 11 '18 at 1:24










  • $begingroup$
    @reuns: Why not post that as an answer?
    $endgroup$
    – Torsten Schoeneberg
    Dec 12 '18 at 18:48
















1












$begingroup$


Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:




  1. $forall x in mathbb{F}_p[overline {T(x)}=x]$

  2. $forall x in mathbb{F}_p[T(x)^p=T(x)]$


Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:




  1. $forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$


  2. $exists x in mathbb{F}_p[psi(x) neq 1]$



Moreover, assume $1 leq k leq p-2$.



By the way, the overline notation indicates reduction mod p.




I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$






I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
    $endgroup$
    – reuns
    Dec 11 '18 at 1:24










  • $begingroup$
    @reuns: Why not post that as an answer?
    $endgroup$
    – Torsten Schoeneberg
    Dec 12 '18 at 18:48














1












1








1





$begingroup$


Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:




  1. $forall x in mathbb{F}_p[overline {T(x)}=x]$

  2. $forall x in mathbb{F}_p[T(x)^p=T(x)]$


Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:




  1. $forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$


  2. $exists x in mathbb{F}_p[psi(x) neq 1]$



Moreover, assume $1 leq k leq p-2$.



By the way, the overline notation indicates reduction mod p.




I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$






I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.










share|cite|improve this question











$endgroup$




Let $Z_p$ denote the p-adic integers. Let $T:mathbb{F_p}to Z_p$ be a function with the following properties:




  1. $forall x in mathbb{F}_p[overline {T(x)}=x]$

  2. $forall x in mathbb{F}_p[T(x)^p=T(x)]$


Let $psi: mathbb{F}_p to Z_p(zeta_p)$ have the following properties:




  1. $forall x,y in mathbb{F}_p[psi(x+y)=psi(x)psi(y)]$


  2. $exists x in mathbb{F}_p[psi(x) neq 1]$



Moreover, assume $1 leq k leq p-2$.



By the way, the overline notation indicates reduction mod p.




I want to find the p-adic order of $sum_{i=0}^{p-1}T(overline i)^{p-1-k}psi(overline i)$






I have been able to find for the special case $p=3$ and $k=1$ using an ad-hoc method. In the special case, I use the fact that $T(overline 2)=-1$ and the sum becomes $psi(1)-psi(2)=psi(1)[1-psi(1)],$ which has p-order $frac 1 {p-1}=frac 1 2$ by this theorem. But I don't see how to solve the general case. My professor thinks that the order in the general case should be $frac k {p-1}$ but, alas, I don't see why.







abstract-algebra number-theory prime-numbers finite-fields p-adic-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 5:35









Kemono Chen

3,0521743




3,0521743










asked Dec 10 '18 at 23:04









Pascal's WagerPascal's Wager

357315




357315








  • 1




    $begingroup$
    Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
    $endgroup$
    – reuns
    Dec 11 '18 at 1:24










  • $begingroup$
    @reuns: Why not post that as an answer?
    $endgroup$
    – Torsten Schoeneberg
    Dec 12 '18 at 18:48














  • 1




    $begingroup$
    Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
    $endgroup$
    – reuns
    Dec 11 '18 at 1:24










  • $begingroup$
    @reuns: Why not post that as an answer?
    $endgroup$
    – Torsten Schoeneberg
    Dec 12 '18 at 18:48








1




1




$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24




$begingroup$
Let $f$ a function $mathbb{Z}/pmathbb{Z} to K$ such that $f(lm) = f(l)f(m)$ and $a in K$ then $G_a(k) = sum_{l=1}^{p} f(l) a^{lk} = f(k^{-1})sum_{l=1}^{p} f(lk) a^{lk}=f(k^{-1}) G_a(1)$. If $a^p = 1, a ne 1$ then $sum_{k=1}^p a^{-mk} G_a(k) =sum_{l=1}^{p} f(l) sum_{k=1}^pa^{(l-m)k} = p f(m)$ Whence $p = p f(1)=sum_{k=1}^p a^{-k} G_a(k)=sum_{k=1}^p a^{-k} f(k^{-1}) G_a(1) = G_a(1)^*G_a(1) $ where $*$ is the map sending a root of unity $zeta$ to $zeta^{-1}$. If $K = mathbb{Q}_p(zeta_p),a = zeta_p$ then $|G_a(1)^*|_p = |G_a(1)|_p =|p^{1/2}|_p = p^{-1/2}$.
$endgroup$
– reuns
Dec 11 '18 at 1:24












$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48




$begingroup$
@reuns: Why not post that as an answer?
$endgroup$
– Torsten Schoeneberg
Dec 12 '18 at 18:48










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034615%2foperatornameord-p-sum-i-0p-1t-overline-ip-1-k-psi-overline-i%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034615%2foperatornameord-p-sum-i-0p-1t-overline-ip-1-k-psi-overline-i%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen