Columns greater than a threshold
How can I retrieve the columns in which at least once appears a value < threshold?
For instance:
THRESHOLD = 0
print(df)
Col_1 Col_2 Col_3 Col_4
1 3 5 -9
1 3 5 -9
1 -2 5 -9
print(final_df)
Col_2 Col_4
3 -9
3 -9
-2 -9
I tried with:
df[(df < 0).any(1)]
But it reports the rows, not the columns, in which at least one element < 0 appears.
python pandas threshold
add a comment |
How can I retrieve the columns in which at least once appears a value < threshold?
For instance:
THRESHOLD = 0
print(df)
Col_1 Col_2 Col_3 Col_4
1 3 5 -9
1 3 5 -9
1 -2 5 -9
print(final_df)
Col_2 Col_4
3 -9
3 -9
-2 -9
I tried with:
df[(df < 0).any(1)]
But it reports the rows, not the columns, in which at least one element < 0 appears.
python pandas threshold
you can transpose but it's probably not the best solution.df.T[(df.T < 0).any(1)].T
– gyx-hh
Nov 23 '18 at 15:21
add a comment |
How can I retrieve the columns in which at least once appears a value < threshold?
For instance:
THRESHOLD = 0
print(df)
Col_1 Col_2 Col_3 Col_4
1 3 5 -9
1 3 5 -9
1 -2 5 -9
print(final_df)
Col_2 Col_4
3 -9
3 -9
-2 -9
I tried with:
df[(df < 0).any(1)]
But it reports the rows, not the columns, in which at least one element < 0 appears.
python pandas threshold
How can I retrieve the columns in which at least once appears a value < threshold?
For instance:
THRESHOLD = 0
print(df)
Col_1 Col_2 Col_3 Col_4
1 3 5 -9
1 3 5 -9
1 -2 5 -9
print(final_df)
Col_2 Col_4
3 -9
3 -9
-2 -9
I tried with:
df[(df < 0).any(1)]
But it reports the rows, not the columns, in which at least one element < 0 appears.
python pandas threshold
python pandas threshold
edited Nov 23 '18 at 15:20
D Manokhin
599219
599219
asked Nov 23 '18 at 15:16
Alessandro CeccarelliAlessandro Ceccarelli
259211
259211
you can transpose but it's probably not the best solution.df.T[(df.T < 0).any(1)].T
– gyx-hh
Nov 23 '18 at 15:21
add a comment |
you can transpose but it's probably not the best solution.df.T[(df.T < 0).any(1)].T
– gyx-hh
Nov 23 '18 at 15:21
you can transpose but it's probably not the best solution.
df.T[(df.T < 0).any(1)].T
– gyx-hh
Nov 23 '18 at 15:21
you can transpose but it's probably not the best solution.
df.T[(df.T < 0).any(1)].T
– gyx-hh
Nov 23 '18 at 15:21
add a comment |
2 Answers
2
active
oldest
votes
You can issue df.loc[:, (df < 0).any(0)]
.
>>> df
Col_1 Col_2 Col_3 Col_4
0 1 3 5 -9
1 1 3 5 -9
2 1 -2 5 -9
>>>
>>> df.loc[:, (df < 0).any(0)]
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Details:
(df < 0).any(0)
will give you the columns that have a value lower than zero, because any(0)
operates along the rows.
>>> df < 0
Col_1 Col_2 Col_3 Col_4
0 False False False True
1 False False False True
2 False True False True
>>>
>>> (df < 0).any(0)
Col_1 False
Col_2 True
Col_3 False
Col_4 True
dtype: bool
Then df.loc[:, (df < 0).any(0)]
selects all rows and the columns for which df < 0).any(0)
is True
by boolean indexing.
add a comment |
Using axis=0
with .loc
df.loc[:,(df < 0).any(0)]
Out[215]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Or we using .iloc
with nonzero
df.iloc[:,(df<0).any().nonzero()[0]]
Out[230]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53449154%2fcolumns-greater-than-a-threshold%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
You can issue df.loc[:, (df < 0).any(0)]
.
>>> df
Col_1 Col_2 Col_3 Col_4
0 1 3 5 -9
1 1 3 5 -9
2 1 -2 5 -9
>>>
>>> df.loc[:, (df < 0).any(0)]
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Details:
(df < 0).any(0)
will give you the columns that have a value lower than zero, because any(0)
operates along the rows.
>>> df < 0
Col_1 Col_2 Col_3 Col_4
0 False False False True
1 False False False True
2 False True False True
>>>
>>> (df < 0).any(0)
Col_1 False
Col_2 True
Col_3 False
Col_4 True
dtype: bool
Then df.loc[:, (df < 0).any(0)]
selects all rows and the columns for which df < 0).any(0)
is True
by boolean indexing.
add a comment |
You can issue df.loc[:, (df < 0).any(0)]
.
>>> df
Col_1 Col_2 Col_3 Col_4
0 1 3 5 -9
1 1 3 5 -9
2 1 -2 5 -9
>>>
>>> df.loc[:, (df < 0).any(0)]
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Details:
(df < 0).any(0)
will give you the columns that have a value lower than zero, because any(0)
operates along the rows.
>>> df < 0
Col_1 Col_2 Col_3 Col_4
0 False False False True
1 False False False True
2 False True False True
>>>
>>> (df < 0).any(0)
Col_1 False
Col_2 True
Col_3 False
Col_4 True
dtype: bool
Then df.loc[:, (df < 0).any(0)]
selects all rows and the columns for which df < 0).any(0)
is True
by boolean indexing.
add a comment |
You can issue df.loc[:, (df < 0).any(0)]
.
>>> df
Col_1 Col_2 Col_3 Col_4
0 1 3 5 -9
1 1 3 5 -9
2 1 -2 5 -9
>>>
>>> df.loc[:, (df < 0).any(0)]
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Details:
(df < 0).any(0)
will give you the columns that have a value lower than zero, because any(0)
operates along the rows.
>>> df < 0
Col_1 Col_2 Col_3 Col_4
0 False False False True
1 False False False True
2 False True False True
>>>
>>> (df < 0).any(0)
Col_1 False
Col_2 True
Col_3 False
Col_4 True
dtype: bool
Then df.loc[:, (df < 0).any(0)]
selects all rows and the columns for which df < 0).any(0)
is True
by boolean indexing.
You can issue df.loc[:, (df < 0).any(0)]
.
>>> df
Col_1 Col_2 Col_3 Col_4
0 1 3 5 -9
1 1 3 5 -9
2 1 -2 5 -9
>>>
>>> df.loc[:, (df < 0).any(0)]
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Details:
(df < 0).any(0)
will give you the columns that have a value lower than zero, because any(0)
operates along the rows.
>>> df < 0
Col_1 Col_2 Col_3 Col_4
0 False False False True
1 False False False True
2 False True False True
>>>
>>> (df < 0).any(0)
Col_1 False
Col_2 True
Col_3 False
Col_4 True
dtype: bool
Then df.loc[:, (df < 0).any(0)]
selects all rows and the columns for which df < 0).any(0)
is True
by boolean indexing.
answered Nov 23 '18 at 15:22
timgebtimgeb
50.8k116493
50.8k116493
add a comment |
add a comment |
Using axis=0
with .loc
df.loc[:,(df < 0).any(0)]
Out[215]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Or we using .iloc
with nonzero
df.iloc[:,(df<0).any().nonzero()[0]]
Out[230]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
add a comment |
Using axis=0
with .loc
df.loc[:,(df < 0).any(0)]
Out[215]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Or we using .iloc
with nonzero
df.iloc[:,(df<0).any().nonzero()[0]]
Out[230]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
add a comment |
Using axis=0
with .loc
df.loc[:,(df < 0).any(0)]
Out[215]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Or we using .iloc
with nonzero
df.iloc[:,(df<0).any().nonzero()[0]]
Out[230]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Using axis=0
with .loc
df.loc[:,(df < 0).any(0)]
Out[215]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
Or we using .iloc
with nonzero
df.iloc[:,(df<0).any().nonzero()[0]]
Out[230]:
Col_2 Col_4
0 3 -9
1 3 -9
2 -2 -9
edited Nov 23 '18 at 15:27
answered Nov 23 '18 at 15:22
Wen-BenWen-Ben
110k83266
110k83266
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53449154%2fcolumns-greater-than-a-threshold%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
you can transpose but it's probably not the best solution.
df.T[(df.T < 0).any(1)].T
– gyx-hh
Nov 23 '18 at 15:21