Compute the limit $lim_{ntoinfty} I_n(a)$ where $ I_n(a) :=int_0^a frac{x^n}{x^n+1},mathrm{d}x, nin N$.












3












$begingroup$


For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$




  1. Prove that $0le I_n(1) le frac{1}{n+1}$

  2. Compute $lim_{ntoinfty} I_n(a)$


My attempt:




  1. I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
    $$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$


  2. first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????



I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I started to make your layout readable please look at what I have done and edit your posting.
    $endgroup$
    – Nathanael Skrepek
    Dec 16 '18 at 13:39










  • $begingroup$
    I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
    $endgroup$
    – DavidG
    Dec 17 '18 at 9:35
















3












$begingroup$


For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$




  1. Prove that $0le I_n(1) le frac{1}{n+1}$

  2. Compute $lim_{ntoinfty} I_n(a)$


My attempt:




  1. I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
    $$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$


  2. first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????



I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I started to make your layout readable please look at what I have done and edit your posting.
    $endgroup$
    – Nathanael Skrepek
    Dec 16 '18 at 13:39










  • $begingroup$
    I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
    $endgroup$
    – DavidG
    Dec 17 '18 at 9:35














3












3








3


1



$begingroup$


For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$




  1. Prove that $0le I_n(1) le frac{1}{n+1}$

  2. Compute $lim_{ntoinfty} I_n(a)$


My attempt:




  1. I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
    $$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$


  2. first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????



I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.










share|cite|improve this question











$endgroup$




For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$




  1. Prove that $0le I_n(1) le frac{1}{n+1}$

  2. Compute $lim_{ntoinfty} I_n(a)$


My attempt:




  1. I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
    $$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$


  2. first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????



I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.







integration limits convergence definite-integrals integral-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 13:43









amWhy

1




1










asked Dec 16 '18 at 13:24









G. BaseG. Base

213




213












  • $begingroup$
    I started to make your layout readable please look at what I have done and edit your posting.
    $endgroup$
    – Nathanael Skrepek
    Dec 16 '18 at 13:39










  • $begingroup$
    I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
    $endgroup$
    – DavidG
    Dec 17 '18 at 9:35


















  • $begingroup$
    I started to make your layout readable please look at what I have done and edit your posting.
    $endgroup$
    – Nathanael Skrepek
    Dec 16 '18 at 13:39










  • $begingroup$
    I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
    $endgroup$
    – DavidG
    Dec 17 '18 at 9:35
















$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39




$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39












$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35




$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35










3 Answers
3






active

oldest

votes


















2












$begingroup$

Note that we have



$$begin{align}
int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
&=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
end{align}$$



For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,



$$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$



and



$$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$



Can you finish now?






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Certainly not the most compact approach, but:



    begin{equation}
    I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
    end{equation}



    Now:
    begin{equation}
    J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
    end{equation}



    With $n geq 1$ and $x geq 0$



    Here, let $t = a^n$ to arrive at:



    begin{equation}
    J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
    end{equation}



    Now let $u = frac{1}{1 + t}$ to arrive at:



    begin{align}
    J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
    &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
    end{align}



    Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,



    begin{align}
    J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
    &= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
    &= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
    end{align}



    Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function



    Using the relationship between the Beta and Gamma functions we arrive at:



    begin{align}
    J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
    end{align}



    For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have



    begin{align}
    I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
    end{align}



    From here you can attempt your direct questions.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      I believe that the limit is $a-1$.
      $endgroup$
      – Mark Viola
      Dec 17 '18 at 13:58










    • $begingroup$
      @MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
      $endgroup$
      – DavidG
      Dec 18 '18 at 5:19



















    0












    $begingroup$

    Lets consider the interval $(1, a)$. We have



    $|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$



    By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that



    $|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$



    Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have



    $int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $



    $int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $



    $int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $



    Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042601%2fcompute-the-limit-lim-n-to-infty-i-na-where-i-na-int-0a-fracxn%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Note that we have



      $$begin{align}
      int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
      &=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
      end{align}$$



      For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,



      $$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$



      and



      $$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$



      Can you finish now?






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Note that we have



        $$begin{align}
        int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
        &=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
        end{align}$$



        For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,



        $$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$



        and



        $$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$



        Can you finish now?






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Note that we have



          $$begin{align}
          int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
          &=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
          end{align}$$



          For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,



          $$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$



          and



          $$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$



          Can you finish now?






          share|cite|improve this answer









          $endgroup$



          Note that we have



          $$begin{align}
          int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
          &=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
          end{align}$$



          For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,



          $$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$



          and



          $$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$



          Can you finish now?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 16 '18 at 15:26









          Mark ViolaMark Viola

          132k1276174




          132k1276174























              1












              $begingroup$

              Certainly not the most compact approach, but:



              begin{equation}
              I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
              end{equation}



              Now:
              begin{equation}
              J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
              end{equation}



              With $n geq 1$ and $x geq 0$



              Here, let $t = a^n$ to arrive at:



              begin{equation}
              J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
              end{equation}



              Now let $u = frac{1}{1 + t}$ to arrive at:



              begin{align}
              J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
              &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
              end{align}



              Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,



              begin{align}
              J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
              &= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
              &= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function



              Using the relationship between the Beta and Gamma functions we arrive at:



              begin{align}
              J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have



              begin{align}
              I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              From here you can attempt your direct questions.






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                I believe that the limit is $a-1$.
                $endgroup$
                – Mark Viola
                Dec 17 '18 at 13:58










              • $begingroup$
                @MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
                $endgroup$
                – DavidG
                Dec 18 '18 at 5:19
















              1












              $begingroup$

              Certainly not the most compact approach, but:



              begin{equation}
              I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
              end{equation}



              Now:
              begin{equation}
              J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
              end{equation}



              With $n geq 1$ and $x geq 0$



              Here, let $t = a^n$ to arrive at:



              begin{equation}
              J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
              end{equation}



              Now let $u = frac{1}{1 + t}$ to arrive at:



              begin{align}
              J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
              &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
              end{align}



              Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,



              begin{align}
              J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
              &= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
              &= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function



              Using the relationship between the Beta and Gamma functions we arrive at:



              begin{align}
              J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have



              begin{align}
              I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              From here you can attempt your direct questions.






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                I believe that the limit is $a-1$.
                $endgroup$
                – Mark Viola
                Dec 17 '18 at 13:58










              • $begingroup$
                @MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
                $endgroup$
                – DavidG
                Dec 18 '18 at 5:19














              1












              1








              1





              $begingroup$

              Certainly not the most compact approach, but:



              begin{equation}
              I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
              end{equation}



              Now:
              begin{equation}
              J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
              end{equation}



              With $n geq 1$ and $x geq 0$



              Here, let $t = a^n$ to arrive at:



              begin{equation}
              J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
              end{equation}



              Now let $u = frac{1}{1 + t}$ to arrive at:



              begin{align}
              J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
              &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
              end{align}



              Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,



              begin{align}
              J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
              &= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
              &= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function



              Using the relationship between the Beta and Gamma functions we arrive at:



              begin{align}
              J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have



              begin{align}
              I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              From here you can attempt your direct questions.






              share|cite|improve this answer











              $endgroup$



              Certainly not the most compact approach, but:



              begin{equation}
              I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
              end{equation}



              Now:
              begin{equation}
              J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
              end{equation}



              With $n geq 1$ and $x geq 0$



              Here, let $t = a^n$ to arrive at:



              begin{equation}
              J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
              end{equation}



              Now let $u = frac{1}{1 + t}$ to arrive at:



              begin{align}
              J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
              &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
              end{align}



              Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,



              begin{align}
              J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
              &= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
              &= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function



              Using the relationship between the Beta and Gamma functions we arrive at:



              begin{align}
              J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have



              begin{align}
              I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
              end{align}



              From here you can attempt your direct questions.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 18 '18 at 5:31

























              answered Dec 17 '18 at 1:45









              DavidGDavidG

              2,1121723




              2,1121723








              • 1




                $begingroup$
                I believe that the limit is $a-1$.
                $endgroup$
                – Mark Viola
                Dec 17 '18 at 13:58










              • $begingroup$
                @MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
                $endgroup$
                – DavidG
                Dec 18 '18 at 5:19














              • 1




                $begingroup$
                I believe that the limit is $a-1$.
                $endgroup$
                – Mark Viola
                Dec 17 '18 at 13:58










              • $begingroup$
                @MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
                $endgroup$
                – DavidG
                Dec 18 '18 at 5:19








              1




              1




              $begingroup$
              I believe that the limit is $a-1$.
              $endgroup$
              – Mark Viola
              Dec 17 '18 at 13:58




              $begingroup$
              I believe that the limit is $a-1$.
              $endgroup$
              – Mark Viola
              Dec 17 '18 at 13:58












              $begingroup$
              @MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
              $endgroup$
              – DavidG
              Dec 18 '18 at 5:19




              $begingroup$
              @MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
              $endgroup$
              – DavidG
              Dec 18 '18 at 5:19











              0












              $begingroup$

              Lets consider the interval $(1, a)$. We have



              $|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$



              By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that



              $|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$



              Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have



              $int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $



              $int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $



              $int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $



              Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Lets consider the interval $(1, a)$. We have



                $|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$



                By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that



                $|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$



                Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have



                $int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $



                $int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $



                $int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $



                Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Lets consider the interval $(1, a)$. We have



                  $|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$



                  By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that



                  $|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$



                  Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have



                  $int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $



                  $int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $



                  $int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $



                  Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.






                  share|cite|improve this answer











                  $endgroup$



                  Lets consider the interval $(1, a)$. We have



                  $|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$



                  By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that



                  $|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$



                  Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have



                  $int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $



                  $int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $



                  $int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $



                  Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 16 '18 at 15:01

























                  answered Dec 16 '18 at 14:23









                  M. SantosM. Santos

                  7615




                  7615






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042601%2fcompute-the-limit-lim-n-to-infty-i-na-where-i-na-int-0a-fracxn%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      To store a contact into the json file from server.js file using a class in NodeJS

                      Redirect URL with Chrome Remote Debugging Android Devices

                      Dieringhausen