Compute the limit $lim_{ntoinfty} I_n(a)$ where $ I_n(a) :=int_0^a frac{x^n}{x^n+1},mathrm{d}x, nin N$.
$begingroup$
For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$
- Prove that $0le I_n(1) le frac{1}{n+1}$
- Compute $lim_{ntoinfty} I_n(a)$
My attempt:
I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
$$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????
I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.
integration limits convergence definite-integrals integral-inequality
$endgroup$
add a comment |
$begingroup$
For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$
- Prove that $0le I_n(1) le frac{1}{n+1}$
- Compute $lim_{ntoinfty} I_n(a)$
My attempt:
I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
$$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????
I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.
integration limits convergence definite-integrals integral-inequality
$endgroup$
$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39
$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35
add a comment |
$begingroup$
For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$
- Prove that $0le I_n(1) le frac{1}{n+1}$
- Compute $lim_{ntoinfty} I_n(a)$
My attempt:
I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
$$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????
I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.
integration limits convergence definite-integrals integral-inequality
$endgroup$
For $a>0$ we define
$$space I_n(a)=int_0^afrac{x^n}{x^n+1},mathrm{d}x , nin N.$$
- Prove that $0le I_n(1) le frac{1}{n+1}$
- Compute $lim_{ntoinfty} I_n(a)$
My attempt:
I regard $I_n(1)=int_0^1frac{x^n}{x^n+1}$. If $xin (0,1)$ then $x^nin(0,1)$ and $x^n+1in(1,2)$.
$$x^n>0 Rightarrow x^n+1>1 Rightarrow 1>frac{1}{1+x^n }Rightarrow x^n>frac{x^n}{x^n+1}Rightarrow int_0^1frac{x^n }{x^n+1}dx<int_o^1 x^n mathrm{d}x\ Rightarrow int_0^1frac{x^n }{x^n+1}dx<frac{1}{n+1} \ 0lefrac{x^n}{x^n+1} \ text{In concusion } 0le I_n(1) le frac{1}{n+1}.$$first case $ain(0,1) Rightarrow lim_{ntoinfty} I_n(a) =0$. $I_n(a)lefrac{1}{n+1})text{case 2 . }ain(1,infty) Rightarrow$ ???????
I don't believe the limit is $infty$ because $frac{x^n }{x^n+1}le 1$.
I would appreciate some hints.
integration limits convergence definite-integrals integral-inequality
integration limits convergence definite-integrals integral-inequality
edited Dec 16 '18 at 13:43
amWhy
1
1
asked Dec 16 '18 at 13:24
G. BaseG. Base
213
213
$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39
$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35
add a comment |
$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39
$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35
$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39
$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39
$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35
$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Note that we have
$$begin{align}
int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
&=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
end{align}$$
For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,
$$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$
and
$$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$
Can you finish now?
$endgroup$
add a comment |
$begingroup$
Certainly not the most compact approach, but:
begin{equation}
I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
end{equation}
Now:
begin{equation}
J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
end{equation}
With $n geq 1$ and $x geq 0$
Here, let $t = a^n$ to arrive at:
begin{equation}
J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
end{equation}
Now let $u = frac{1}{1 + t}$ to arrive at:
begin{align}
J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
&= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
end{align}
Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,
begin{align}
J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
&= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
&= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function
Using the relationship between the Beta and Gamma functions we arrive at:
begin{align}
J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have
begin{align}
I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
From here you can attempt your direct questions.
$endgroup$
1
$begingroup$
I believe that the limit is $a-1$.
$endgroup$
– Mark Viola
Dec 17 '18 at 13:58
$begingroup$
@MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
$endgroup$
– DavidG
Dec 18 '18 at 5:19
add a comment |
$begingroup$
Lets consider the interval $(1, a)$. We have
$|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$
By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that
$|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$
Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have
$int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $
$int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $
$int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $
Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042601%2fcompute-the-limit-lim-n-to-infty-i-na-where-i-na-int-0a-fracxn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that we have
$$begin{align}
int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
&=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
end{align}$$
For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,
$$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$
and
$$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$
Can you finish now?
$endgroup$
add a comment |
$begingroup$
Note that we have
$$begin{align}
int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
&=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
end{align}$$
For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,
$$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$
and
$$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$
Can you finish now?
$endgroup$
add a comment |
$begingroup$
Note that we have
$$begin{align}
int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
&=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
end{align}$$
For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,
$$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$
and
$$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$
Can you finish now?
$endgroup$
Note that we have
$$begin{align}
int_0^a frac{x^n}{1+x^n},dx&=int_0^1 frac{x^n}{1+x^n},dx+int_1^a frac{x^n}{1+x^n},dx\\
&=int_0^1 frac{x^n}{1+x^n},dx+(a-1)-int_1^a frac{1}{1+x^n},dx
end{align}$$
For $xin [0,1]$, $0le frac{x^n}{1+x^n}le x^n$ and for $xin[1,a]$, $frac{1}{1+x^n}le frac1{x^n}$. Therefore,
$$left|int_0^1 frac{x^n}{1+x^n},dxright|le frac1{n+1}$$
and
$$left|int_1^a frac{1}{1+x^n},dxright|le frac{1-a^{1-n}}{n-1}$$
Can you finish now?
answered Dec 16 '18 at 15:26
Mark ViolaMark Viola
132k1276174
132k1276174
add a comment |
add a comment |
$begingroup$
Certainly not the most compact approach, but:
begin{equation}
I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
end{equation}
Now:
begin{equation}
J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
end{equation}
With $n geq 1$ and $x geq 0$
Here, let $t = a^n$ to arrive at:
begin{equation}
J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
end{equation}
Now let $u = frac{1}{1 + t}$ to arrive at:
begin{align}
J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
&= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
end{align}
Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,
begin{align}
J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
&= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
&= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function
Using the relationship between the Beta and Gamma functions we arrive at:
begin{align}
J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have
begin{align}
I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
From here you can attempt your direct questions.
$endgroup$
1
$begingroup$
I believe that the limit is $a-1$.
$endgroup$
– Mark Viola
Dec 17 '18 at 13:58
$begingroup$
@MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
$endgroup$
– DavidG
Dec 18 '18 at 5:19
add a comment |
$begingroup$
Certainly not the most compact approach, but:
begin{equation}
I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
end{equation}
Now:
begin{equation}
J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
end{equation}
With $n geq 1$ and $x geq 0$
Here, let $t = a^n$ to arrive at:
begin{equation}
J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
end{equation}
Now let $u = frac{1}{1 + t}$ to arrive at:
begin{align}
J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
&= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
end{align}
Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,
begin{align}
J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
&= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
&= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function
Using the relationship between the Beta and Gamma functions we arrive at:
begin{align}
J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have
begin{align}
I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
From here you can attempt your direct questions.
$endgroup$
1
$begingroup$
I believe that the limit is $a-1$.
$endgroup$
– Mark Viola
Dec 17 '18 at 13:58
$begingroup$
@MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
$endgroup$
– DavidG
Dec 18 '18 at 5:19
add a comment |
$begingroup$
Certainly not the most compact approach, but:
begin{equation}
I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
end{equation}
Now:
begin{equation}
J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
end{equation}
With $n geq 1$ and $x geq 0$
Here, let $t = a^n$ to arrive at:
begin{equation}
J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
end{equation}
Now let $u = frac{1}{1 + t}$ to arrive at:
begin{align}
J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
&= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
end{align}
Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,
begin{align}
J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
&= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
&= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function
Using the relationship between the Beta and Gamma functions we arrive at:
begin{align}
J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have
begin{align}
I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
From here you can attempt your direct questions.
$endgroup$
Certainly not the most compact approach, but:
begin{equation}
I_n(a) = int_{0}^{a} frac{w^n}{w^n + 1}:dw = int_{0}^{a}left[ 1 - frac{1}{w^n + 1}right]:dw = a - int_{0}^{a}frac{1}{w^n + 1}:dw
end{equation}
Now:
begin{equation}
J_n(a) = int_{0}^{a} frac{1}{w^n + 1}:dw
end{equation}
With $n geq 1$ and $x geq 0$
Here, let $t = a^n$ to arrive at:
begin{equation}
J_n(a) = frac{1}{n}int_{0}^{x^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt
end{equation}
Now let $u = frac{1}{1 + t}$ to arrive at:
begin{align}
J_n(a) &= frac{1}{n}int_{0}^{a^n} frac{1}{t + 1}t^{frac{1}{n} - 1}:dt = frac{1}{n}int_{1}^{dfrac{1}{a^n + 1}} u left(frac{1 - u}{u} right)^{1 - frac{1}{n} }frac{-1}{u^2}:du \
&= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du
end{align}
Here, as $x geq 0$ and $n > 1$, we see that $dfrac{1}{a^n + 1} < 1$ and thus,
begin{align}
J_n(a) &= frac{1}{n}int_{dfrac{1}{a^n + 1}}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du \
&= frac{1}{n}left[int_{0}^{1} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:du - int_{0}^{dfrac{1}{a^n + 1}} u^{-frac{1}{n}}left(1 - uright)^{frac{1}{n} - 1}:duright] \
&= frac{1}{n}left[Bleft(1 - frac{1}{n}, frac{1}{n} right) - Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
Where $B(a,b)$ is the Beta function and $B(a,b,x)$ is the Incomplete Beta function
Using the relationship between the Beta and Gamma functions we arrive at:
begin{align}
J_n(a) &= int_{0}^{a} frac{1}{w^n + 1}:dw = frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
For $a geq 0$ and $n geq 1$. Returning to $I(a)$ we have
begin{align}
I_n(a) = a - J_n(a) = a - frac{1}{n}left[Gammaleft(1 - frac{1}{n} right)Gammaleft(frac{1}{n} right)- Bleft(1 - frac{1}{n}, frac{1}{n}, frac{1}{a^n + 1}right)right]
end{align}
From here you can attempt your direct questions.
edited Dec 18 '18 at 5:31
answered Dec 17 '18 at 1:45
DavidGDavidG
2,1121723
2,1121723
1
$begingroup$
I believe that the limit is $a-1$.
$endgroup$
– Mark Viola
Dec 17 '18 at 13:58
$begingroup$
@MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
$endgroup$
– DavidG
Dec 18 '18 at 5:19
add a comment |
1
$begingroup$
I believe that the limit is $a-1$.
$endgroup$
– Mark Viola
Dec 17 '18 at 13:58
$begingroup$
@MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
$endgroup$
– DavidG
Dec 18 '18 at 5:19
1
1
$begingroup$
I believe that the limit is $a-1$.
$endgroup$
– Mark Viola
Dec 17 '18 at 13:58
$begingroup$
I believe that the limit is $a-1$.
$endgroup$
– Mark Viola
Dec 17 '18 at 13:58
$begingroup$
@MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
$endgroup$
– DavidG
Dec 18 '18 at 5:19
$begingroup$
@MarkViola - I'm sure you're correct. I just realised where I made my error, the incomplete beta funciton should not have '0' as it's final value and should be '1'. I will amend now. Thank you for the pickup. Much appreciated.
$endgroup$
– DavidG
Dec 18 '18 at 5:19
add a comment |
$begingroup$
Lets consider the interval $(1, a)$. We have
$|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$
By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that
$|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$
Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have
$int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $
$int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $
$int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $
Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.
$endgroup$
add a comment |
$begingroup$
Lets consider the interval $(1, a)$. We have
$|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$
By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that
$|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$
Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have
$int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $
$int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $
$int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $
Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.
$endgroup$
add a comment |
$begingroup$
Lets consider the interval $(1, a)$. We have
$|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$
By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that
$|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$
Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have
$int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $
$int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $
$int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $
Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.
$endgroup$
Lets consider the interval $(1, a)$. We have
$|frac{x^n}{1 + x^n} - 1| = |frac{1}{1+x^n}|$
By Bernoulli's Inequality, $x^n = (1 + (x - 1))^n geq 1 + n(x - 1)$. This implies that
$|frac{x^n}{1 + x^n} - 1| leq frac{1}{2 + n(x-1)}$
Now, fix $epsilon > 0$ small enough and choose $n$ big enough such that $frac{1}{2 + n(x-1)} < frac{epsilon}{2(a - 1)}$ for every $ x in (1 + frac{epsilon}{2}, a)$. We then have
$int_1^a |frac{x^n}{1 + x^n} - 1| dx = int_1^a |frac{1}{1+x^n}| dx = $
$int_{1}^{1 + frac{epsilon}{2}} |frac{1}{1+x^n}| dx + int_{1 +frac{epsilon}{2}}^{a} |frac{1}{1+x^n}| dx leq $
$int_{1}^{1 + frac{epsilon}{2}} 1 dx + int_{1 +frac{epsilon}{2}}^{a} frac{1}{2 + n(x - 1)} dx < epsilon $
Now separate the original integral in $(0, 1)$ and $(1, a)$, and conclude.
edited Dec 16 '18 at 15:01
answered Dec 16 '18 at 14:23
M. SantosM. Santos
7615
7615
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042601%2fcompute-the-limit-lim-n-to-infty-i-na-where-i-na-int-0a-fracxn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I started to make your layout readable please look at what I have done and edit your posting.
$endgroup$
– Nathanael Skrepek
Dec 16 '18 at 13:39
$begingroup$
I have a feeling this may help you - functions.wolfram.com/GammaBetaErf/Gamma/29
$endgroup$
– DavidG
Dec 17 '18 at 9:35