Integration $ I=int_{0}^{infty} x^{c-1} ln(1+x) dx $
$begingroup$
I am trying to handle the integration that's given below.
$$ I=int_{0}^{infty} x^{c-1} ln(1+x) dx $$
where $c$ and $x$ are both positive numbers. I found a conditional solution for the above integration from the 'table of integrals' book by Gradshteyn as:
$$ int_{0}^{infty} x^{mu-1} ln(1+gamma x) dx= frac{pi}{mu gamma^{u}sin mupi} $$
with the condition $left [-1<Re mu <0, |arg gamma|<pi right]$. My expression does not satisfy the conditions of the above given solution.
Any hint/help will be really appreciated. Thanks.
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I am trying to handle the integration that's given below.
$$ I=int_{0}^{infty} x^{c-1} ln(1+x) dx $$
where $c$ and $x$ are both positive numbers. I found a conditional solution for the above integration from the 'table of integrals' book by Gradshteyn as:
$$ int_{0}^{infty} x^{mu-1} ln(1+gamma x) dx= frac{pi}{mu gamma^{u}sin mupi} $$
with the condition $left [-1<Re mu <0, |arg gamma|<pi right]$. My expression does not satisfy the conditions of the above given solution.
Any hint/help will be really appreciated. Thanks.
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I am trying to handle the integration that's given below.
$$ I=int_{0}^{infty} x^{c-1} ln(1+x) dx $$
where $c$ and $x$ are both positive numbers. I found a conditional solution for the above integration from the 'table of integrals' book by Gradshteyn as:
$$ int_{0}^{infty} x^{mu-1} ln(1+gamma x) dx= frac{pi}{mu gamma^{u}sin mupi} $$
with the condition $left [-1<Re mu <0, |arg gamma|<pi right]$. My expression does not satisfy the conditions of the above given solution.
Any hint/help will be really appreciated. Thanks.
calculus integration definite-integrals
$endgroup$
I am trying to handle the integration that's given below.
$$ I=int_{0}^{infty} x^{c-1} ln(1+x) dx $$
where $c$ and $x$ are both positive numbers. I found a conditional solution for the above integration from the 'table of integrals' book by Gradshteyn as:
$$ int_{0}^{infty} x^{mu-1} ln(1+gamma x) dx= frac{pi}{mu gamma^{u}sin mupi} $$
with the condition $left [-1<Re mu <0, |arg gamma|<pi right]$. My expression does not satisfy the conditions of the above given solution.
Any hint/help will be really appreciated. Thanks.
calculus integration definite-integrals
calculus integration definite-integrals
edited Dec 13 '18 at 12:52
Arjang
5,60162363
5,60162363
asked Dec 13 '18 at 12:04
AGaniAGani
32
32
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $c>0$ your integral diverges, as $Igeint_1^infty x^{-1}ln xdx=[tfrac{1}{2}ln^2x]_1^infty=infty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037916%2fintegration-i-int-0-infty-xc-1-ln1x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $c>0$ your integral diverges, as $Igeint_1^infty x^{-1}ln xdx=[tfrac{1}{2}ln^2x]_1^infty=infty$.
$endgroup$
add a comment |
$begingroup$
Since $c>0$ your integral diverges, as $Igeint_1^infty x^{-1}ln xdx=[tfrac{1}{2}ln^2x]_1^infty=infty$.
$endgroup$
add a comment |
$begingroup$
Since $c>0$ your integral diverges, as $Igeint_1^infty x^{-1}ln xdx=[tfrac{1}{2}ln^2x]_1^infty=infty$.
$endgroup$
Since $c>0$ your integral diverges, as $Igeint_1^infty x^{-1}ln xdx=[tfrac{1}{2}ln^2x]_1^infty=infty$.
edited Dec 13 '18 at 12:50
answered Dec 13 '18 at 12:19
J.G.J.G.
25.7k22540
25.7k22540
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037916%2fintegration-i-int-0-infty-xc-1-ln1x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown