Minimum $M=frac{4}{x^{2}}+frac{4}{y^{2}}+frac{1}{(x-y)^{2}}$ for $3x^2+8y^3=20$
$begingroup$
Let $x,y$ be positive real numbers such that $xneq y$ and
$3x^{2}+8y^{3}=20$. Find $x,y$ so that $M$ get the minimum value:
$M=frac{4}{x^{2}}+frac{4}{y^{2}}+frac{1}{(x-y)^{2}}$.
I can not find when this function gets the minimum value. Or can this difficult problem be solved by differentiating? How do we turn the root to another specie which has $ax+by$ or $frac{ax}{y}$ while $x,y$ are some constants.
Help me to solve this problem.
calculus inequality optimization nonlinear-optimization maxima-minima
$endgroup$
add a comment |
$begingroup$
Let $x,y$ be positive real numbers such that $xneq y$ and
$3x^{2}+8y^{3}=20$. Find $x,y$ so that $M$ get the minimum value:
$M=frac{4}{x^{2}}+frac{4}{y^{2}}+frac{1}{(x-y)^{2}}$.
I can not find when this function gets the minimum value. Or can this difficult problem be solved by differentiating? How do we turn the root to another specie which has $ax+by$ or $frac{ax}{y}$ while $x,y$ are some constants.
Help me to solve this problem.
calculus inequality optimization nonlinear-optimization maxima-minima
$endgroup$
1
$begingroup$
What does > mean in the second line?
$endgroup$
– William Elliot
Dec 13 '18 at 11:55
add a comment |
$begingroup$
Let $x,y$ be positive real numbers such that $xneq y$ and
$3x^{2}+8y^{3}=20$. Find $x,y$ so that $M$ get the minimum value:
$M=frac{4}{x^{2}}+frac{4}{y^{2}}+frac{1}{(x-y)^{2}}$.
I can not find when this function gets the minimum value. Or can this difficult problem be solved by differentiating? How do we turn the root to another specie which has $ax+by$ or $frac{ax}{y}$ while $x,y$ are some constants.
Help me to solve this problem.
calculus inequality optimization nonlinear-optimization maxima-minima
$endgroup$
Let $x,y$ be positive real numbers such that $xneq y$ and
$3x^{2}+8y^{3}=20$. Find $x,y$ so that $M$ get the minimum value:
$M=frac{4}{x^{2}}+frac{4}{y^{2}}+frac{1}{(x-y)^{2}}$.
I can not find when this function gets the minimum value. Or can this difficult problem be solved by differentiating? How do we turn the root to another specie which has $ax+by$ or $frac{ax}{y}$ while $x,y$ are some constants.
Help me to solve this problem.
calculus inequality optimization nonlinear-optimization maxima-minima
calculus inequality optimization nonlinear-optimization maxima-minima
edited Dec 13 '18 at 14:27
Martin Sleziak
44.8k9118272
44.8k9118272
asked Dec 13 '18 at 11:26
Trong TuanTrong Tuan
1268
1268
1
$begingroup$
What does > mean in the second line?
$endgroup$
– William Elliot
Dec 13 '18 at 11:55
add a comment |
1
$begingroup$
What does > mean in the second line?
$endgroup$
– William Elliot
Dec 13 '18 at 11:55
1
1
$begingroup$
What does > mean in the second line?
$endgroup$
– William Elliot
Dec 13 '18 at 11:55
$begingroup$
What does > mean in the second line?
$endgroup$
– William Elliot
Dec 13 '18 at 11:55
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $x=2$ and $y=1$.
Thus, we'll get a value $6$.
We'll prove that it's a minimal value.
Indeed, let $x=2a$ and $y=b$.
Thus, $3a^2+2b^3=5$ and we need to prove that
$$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geq6.$$
But by AM-GM
$$5=3a^2+2b^3=3a^2-1+3b^2+2b^3+1-3b^2geq$$
$$geq3a^2+3b^2-1+3sqrt[3]{(b^3)^2cdot1}-3b^2=3(a^2+b^2)-1,$$
which gives $2geq a^2+b^2.$
Id est, $$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geqfrac{1}{2}(a^2+b^2)left(frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}right).$$
Now, let $a=tb$.
Thus, we need to prove that
$$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ or
$$(t-1)^2(16t^4+16t^3-7t^2-2t+1)geq0,$$ which is obviously true for $tgeq1.$
But for $0<tleq1$ we obtain:
$$16t^4+16t^3-7t^2-2t+1=$$
$$=9t^3(1-t)+left(5t^2+frac{7}{10}t-frac{5}{6}right)^2+frac{1}{900}(759t^2-750t+275)geq0.$$
Done!
Also, we can use derivative here.
Since $$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ it's $f(t)geq0,$ where
$$f(t)=64t^6-64t^5-92t^4+112t^3-8t^2-16t+4,$$ and
$$f'(t)=(t-1)(t+1)(3t-1)(8t^2-4t-1),$$
we obtain $t_{min}=frac{1}{3}$ or $t_{min}=1$ and since $fleft(frac{1}{3}right)>f(1)=0$, we are done.
$endgroup$
$begingroup$
Can w use derivative to solve this. Thank you
$endgroup$
– Trong Tuan
Dec 13 '18 at 13:28
$begingroup$
@Trong Tuan I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 13 '18 at 13:50
$begingroup$
In $$x=2,; y=1$$ is local minimum. Global minimum is in $x=-1.668453756732446,;y=1.133435720989714$
$endgroup$
– Aleksas Domarkas
Dec 19 '18 at 11:38
add a comment |
$begingroup$
Local minimum:
$$f(2,1)=6$$
Global minimum:
$$f(−1.668453756732446,1.133435720989714)=4.677920159716602$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037891%2fminimum-m-frac4x2-frac4y2-frac1x-y2-for-3x28y3-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $x=2$ and $y=1$.
Thus, we'll get a value $6$.
We'll prove that it's a minimal value.
Indeed, let $x=2a$ and $y=b$.
Thus, $3a^2+2b^3=5$ and we need to prove that
$$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geq6.$$
But by AM-GM
$$5=3a^2+2b^3=3a^2-1+3b^2+2b^3+1-3b^2geq$$
$$geq3a^2+3b^2-1+3sqrt[3]{(b^3)^2cdot1}-3b^2=3(a^2+b^2)-1,$$
which gives $2geq a^2+b^2.$
Id est, $$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geqfrac{1}{2}(a^2+b^2)left(frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}right).$$
Now, let $a=tb$.
Thus, we need to prove that
$$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ or
$$(t-1)^2(16t^4+16t^3-7t^2-2t+1)geq0,$$ which is obviously true for $tgeq1.$
But for $0<tleq1$ we obtain:
$$16t^4+16t^3-7t^2-2t+1=$$
$$=9t^3(1-t)+left(5t^2+frac{7}{10}t-frac{5}{6}right)^2+frac{1}{900}(759t^2-750t+275)geq0.$$
Done!
Also, we can use derivative here.
Since $$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ it's $f(t)geq0,$ where
$$f(t)=64t^6-64t^5-92t^4+112t^3-8t^2-16t+4,$$ and
$$f'(t)=(t-1)(t+1)(3t-1)(8t^2-4t-1),$$
we obtain $t_{min}=frac{1}{3}$ or $t_{min}=1$ and since $fleft(frac{1}{3}right)>f(1)=0$, we are done.
$endgroup$
$begingroup$
Can w use derivative to solve this. Thank you
$endgroup$
– Trong Tuan
Dec 13 '18 at 13:28
$begingroup$
@Trong Tuan I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 13 '18 at 13:50
$begingroup$
In $$x=2,; y=1$$ is local minimum. Global minimum is in $x=-1.668453756732446,;y=1.133435720989714$
$endgroup$
– Aleksas Domarkas
Dec 19 '18 at 11:38
add a comment |
$begingroup$
Let $x=2$ and $y=1$.
Thus, we'll get a value $6$.
We'll prove that it's a minimal value.
Indeed, let $x=2a$ and $y=b$.
Thus, $3a^2+2b^3=5$ and we need to prove that
$$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geq6.$$
But by AM-GM
$$5=3a^2+2b^3=3a^2-1+3b^2+2b^3+1-3b^2geq$$
$$geq3a^2+3b^2-1+3sqrt[3]{(b^3)^2cdot1}-3b^2=3(a^2+b^2)-1,$$
which gives $2geq a^2+b^2.$
Id est, $$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geqfrac{1}{2}(a^2+b^2)left(frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}right).$$
Now, let $a=tb$.
Thus, we need to prove that
$$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ or
$$(t-1)^2(16t^4+16t^3-7t^2-2t+1)geq0,$$ which is obviously true for $tgeq1.$
But for $0<tleq1$ we obtain:
$$16t^4+16t^3-7t^2-2t+1=$$
$$=9t^3(1-t)+left(5t^2+frac{7}{10}t-frac{5}{6}right)^2+frac{1}{900}(759t^2-750t+275)geq0.$$
Done!
Also, we can use derivative here.
Since $$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ it's $f(t)geq0,$ where
$$f(t)=64t^6-64t^5-92t^4+112t^3-8t^2-16t+4,$$ and
$$f'(t)=(t-1)(t+1)(3t-1)(8t^2-4t-1),$$
we obtain $t_{min}=frac{1}{3}$ or $t_{min}=1$ and since $fleft(frac{1}{3}right)>f(1)=0$, we are done.
$endgroup$
$begingroup$
Can w use derivative to solve this. Thank you
$endgroup$
– Trong Tuan
Dec 13 '18 at 13:28
$begingroup$
@Trong Tuan I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 13 '18 at 13:50
$begingroup$
In $$x=2,; y=1$$ is local minimum. Global minimum is in $x=-1.668453756732446,;y=1.133435720989714$
$endgroup$
– Aleksas Domarkas
Dec 19 '18 at 11:38
add a comment |
$begingroup$
Let $x=2$ and $y=1$.
Thus, we'll get a value $6$.
We'll prove that it's a minimal value.
Indeed, let $x=2a$ and $y=b$.
Thus, $3a^2+2b^3=5$ and we need to prove that
$$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geq6.$$
But by AM-GM
$$5=3a^2+2b^3=3a^2-1+3b^2+2b^3+1-3b^2geq$$
$$geq3a^2+3b^2-1+3sqrt[3]{(b^3)^2cdot1}-3b^2=3(a^2+b^2)-1,$$
which gives $2geq a^2+b^2.$
Id est, $$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geqfrac{1}{2}(a^2+b^2)left(frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}right).$$
Now, let $a=tb$.
Thus, we need to prove that
$$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ or
$$(t-1)^2(16t^4+16t^3-7t^2-2t+1)geq0,$$ which is obviously true for $tgeq1.$
But for $0<tleq1$ we obtain:
$$16t^4+16t^3-7t^2-2t+1=$$
$$=9t^3(1-t)+left(5t^2+frac{7}{10}t-frac{5}{6}right)^2+frac{1}{900}(759t^2-750t+275)geq0.$$
Done!
Also, we can use derivative here.
Since $$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ it's $f(t)geq0,$ where
$$f(t)=64t^6-64t^5-92t^4+112t^3-8t^2-16t+4,$$ and
$$f'(t)=(t-1)(t+1)(3t-1)(8t^2-4t-1),$$
we obtain $t_{min}=frac{1}{3}$ or $t_{min}=1$ and since $fleft(frac{1}{3}right)>f(1)=0$, we are done.
$endgroup$
Let $x=2$ and $y=1$.
Thus, we'll get a value $6$.
We'll prove that it's a minimal value.
Indeed, let $x=2a$ and $y=b$.
Thus, $3a^2+2b^3=5$ and we need to prove that
$$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geq6.$$
But by AM-GM
$$5=3a^2+2b^3=3a^2-1+3b^2+2b^3+1-3b^2geq$$
$$geq3a^2+3b^2-1+3sqrt[3]{(b^3)^2cdot1}-3b^2=3(a^2+b^2)-1,$$
which gives $2geq a^2+b^2.$
Id est, $$frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}geqfrac{1}{2}(a^2+b^2)left(frac{1}{a^2}+frac{4}{b^2}+frac{1}{(2a-b)^2}right).$$
Now, let $a=tb$.
Thus, we need to prove that
$$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ or
$$(t-1)^2(16t^4+16t^3-7t^2-2t+1)geq0,$$ which is obviously true for $tgeq1.$
But for $0<tleq1$ we obtain:
$$16t^4+16t^3-7t^2-2t+1=$$
$$=9t^3(1-t)+left(5t^2+frac{7}{10}t-frac{5}{6}right)^2+frac{1}{900}(759t^2-750t+275)geq0.$$
Done!
Also, we can use derivative here.
Since $$(t^2+1)left(frac{1}{t^2}+4+frac{1}{(2t-1)^2}right)geq12$$ it's $f(t)geq0,$ where
$$f(t)=64t^6-64t^5-92t^4+112t^3-8t^2-16t+4,$$ and
$$f'(t)=(t-1)(t+1)(3t-1)(8t^2-4t-1),$$
we obtain $t_{min}=frac{1}{3}$ or $t_{min}=1$ and since $fleft(frac{1}{3}right)>f(1)=0$, we are done.
edited Dec 13 '18 at 13:49
answered Dec 13 '18 at 12:04
Michael RozenbergMichael Rozenberg
102k1791195
102k1791195
$begingroup$
Can w use derivative to solve this. Thank you
$endgroup$
– Trong Tuan
Dec 13 '18 at 13:28
$begingroup$
@Trong Tuan I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 13 '18 at 13:50
$begingroup$
In $$x=2,; y=1$$ is local minimum. Global minimum is in $x=-1.668453756732446,;y=1.133435720989714$
$endgroup$
– Aleksas Domarkas
Dec 19 '18 at 11:38
add a comment |
$begingroup$
Can w use derivative to solve this. Thank you
$endgroup$
– Trong Tuan
Dec 13 '18 at 13:28
$begingroup$
@Trong Tuan I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 13 '18 at 13:50
$begingroup$
In $$x=2,; y=1$$ is local minimum. Global minimum is in $x=-1.668453756732446,;y=1.133435720989714$
$endgroup$
– Aleksas Domarkas
Dec 19 '18 at 11:38
$begingroup$
Can w use derivative to solve this. Thank you
$endgroup$
– Trong Tuan
Dec 13 '18 at 13:28
$begingroup$
Can w use derivative to solve this. Thank you
$endgroup$
– Trong Tuan
Dec 13 '18 at 13:28
$begingroup$
@Trong Tuan I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 13 '18 at 13:50
$begingroup$
@Trong Tuan I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 13 '18 at 13:50
$begingroup$
In $$x=2,; y=1$$ is local minimum. Global minimum is in $x=-1.668453756732446,;y=1.133435720989714$
$endgroup$
– Aleksas Domarkas
Dec 19 '18 at 11:38
$begingroup$
In $$x=2,; y=1$$ is local minimum. Global minimum is in $x=-1.668453756732446,;y=1.133435720989714$
$endgroup$
– Aleksas Domarkas
Dec 19 '18 at 11:38
add a comment |
$begingroup$
Local minimum:
$$f(2,1)=6$$
Global minimum:
$$f(−1.668453756732446,1.133435720989714)=4.677920159716602$$
$endgroup$
add a comment |
$begingroup$
Local minimum:
$$f(2,1)=6$$
Global minimum:
$$f(−1.668453756732446,1.133435720989714)=4.677920159716602$$
$endgroup$
add a comment |
$begingroup$
Local minimum:
$$f(2,1)=6$$
Global minimum:
$$f(−1.668453756732446,1.133435720989714)=4.677920159716602$$
$endgroup$
Local minimum:
$$f(2,1)=6$$
Global minimum:
$$f(−1.668453756732446,1.133435720989714)=4.677920159716602$$
answered Dec 19 '18 at 20:43
Aleksas DomarkasAleksas Domarkas
1,24916
1,24916
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037891%2fminimum-m-frac4x2-frac4y2-frac1x-y2-for-3x28y3-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What does > mean in the second line?
$endgroup$
– William Elliot
Dec 13 '18 at 11:55